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The solution of electromagnetic scattering by a homogeneous prolate (or oblate) spheroidal particle with
an arbitrary size and refractive index is obtained for any angle of incidence by solving Maxwell's equations

under given boundary conditions. The method used is that of separating the vector wave equations in the
spheroidal coordinates and expanding them in terms of the spheroidal wavefunctions. The unknown coef-
ficients for the expansion are determined by a system of equations derived from the boundary conditions

regarding the continuity of tangential components of the electric and magnetic vectors across the surface of

the spheroid. The solutions both in the prolate and oblate spheroidal coordinate systems result in a same
form, and the equations for the oblate spheroidal system can be obtained from those for the prolate one by

replacing the prolate spheroidal wavefunctions with the oblate ones and vice versa. For an oblique inci-
dence, the polarized incident wave is resolved into two components, the TM mode for which the magnetic
vector vibrates perpendicularly to the incident plane and the TE mode for which the electric vector vi-

brates perpendicularly to this plane. F or the incidence along the rotation axis the resultant equations are
given in the form similar to the one for a sphere given by the Mie theory. The physical parameters in-

volved are the following five quantities: the size parameter defined by the product of the semifocal dis-

tance of the spheroid and the propagation constant of the incident wave, the eccentricity, the refractive
index of the spheroid relative to the surrounding medium, the incident angle between the direction of the
incident wave and the rotation axis, and the angles that specify the direction of the scattered wave.

1. Introduction

The scattering theory for a homogeneous sphere
with arbitrary size was developed by Mie1 and the
scattering by an infinitely long circular cylinder was
solved by Lord Rayleigh2 at normal incidence and by
Wait3 at oblique incidence. Since then the solutions
for spheres and cylinders have been rederived and
calculated by many investigators. For an ellipsoidal
particle, the exact solution may be, in principle, ob-
tained by means of the method of separation of vari-
ables. Mglish 4 has attempted to formulate the
problem of scattering by an ellipsoid in the ellipso-
idal coordinate system and to express the Hertz vec-
tors of the scattered and internal fields in series of el-
lipsoidal harmonics. His solution is a purely formal
one. The radar cross section of a perfectly conduct-
ing prolate spheroid with nose-on incidence has been
solved by Schultz, 5 and some numerical calculations
have been carried out by Siegel et al. 6

In this paper, the scattering theory of the linearly
polarized electromagnetic wave by a homogeneous
prolate (or oblate) spheroid with any size and refrac-
tive index has been studied. The approach is to sep-
arate the vector wave equation in the spheroidal
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coordinates, which have been chosen in such a way
that the surface of the particle coincides with one of
the coordinate surfaces. Then the solution of the
wave equation is expanded in terms of the spheroidal
wavefunctions, and the expansion coefficients are de-
termined under the boundary conditions. 

II. General Theory of Electromagnetic Scattering

We consider the scattering of a plane, linearly po-
larized monochromatic wave by a homogeneous
spheroidal particle, which is prolate or oblate, im-
mersed in a homogeneous, isotropic medium. It is
assumed that the medium in which the scattering
spheroid is embedded is a nonconductor and that
both the medium and the spheroid are nonmagnetic.

If we assume the time-dependent part of the elec-
tromagnetic field to be exp(-iwt), the time-indepen-
dent parts of the electric and magnetic field vectors
both outside and inside the spheroid satisfy Max-
well's equations in their time-free form7 8

V X E = ikoH. )
Vx H =-ikoC2E, (1)

or the vector wave equations

V2E + k2 E =o, (2)

V2H + k 2H =- 
where

January 1975 / Vol. 14, No. 1 / APPLIED OPTICS 29



ko= w/c = 2r/,xo, (3)

3C = Eu + i (47rruA/w), (4)
and

k = k0 3C. (5)

Both ho and SC are important parameters: ko is the
propagation constant (or wavenumber) in vacuum
and the wavelength in vacuum So follows from it by
XO = 2r/ko, and JC is the complex refractive index of
the medium at the circular frequency a. The param-
eter k given by Eq. (5) is the propagation constant in
the medium with refractive index SC.

The quantities that refer to the surrounding medi-
um will be denoted by superscript I, and those refer-
ring to the spheroid by II. From the assumption, we
have a(I) = 0 and g(I) = >(II) = 1.

As regards the boundary conditions, it is only de-
manded that the tangential components of E and H
be continuous across the surface of the spheroid.
The condition that the normal components of cE and
H be continuous across the surface follows from the
above conditions and from Maxwell's equations. In
order to satisfy the boundary conditions, it must be
assumed that apart from the incident field WE, WH,
and the field (t)E, (t)H within the spheroid, there is a
secondary scattered field (s)E, (s)H in the ambient
medium. Since the boundary conditions must hold
for all time, all six field vectors must have the same
time dependence exp(-iwt), which will be omitted in
the sequences.

IIl Wavefunctions in the Spheroidal Coordinate
System

The spheroidal coordinates are obtained by rota-
tion of an ellipse about an axis of symmetry. Two
cases are to be distinguished, according to whether
the rotation takes place about the major axis (prolate
spheroid) or about the minor axis (oblate spheroid).
It is customary to make the z axis the axis of revolu-
tion in each case. We shall denote the semifocal dis-
tance by 1.

The prolate and oblate spheroidal coordinate sys-
tems (7,k), where ? is an angular coordinate, is a
radial one, and is an azimuthal one, as shown in
Fig. 1 taking the prolate spheroidal coordinate sys-
tem as an example, are related to the Cartesian sys-
tem (x,y,z) by the transformation

with

x = 7(1 - 2)1/2(2 F 1)'"2 cosO,

y = (1 _ q2)1/2(02 1)l'2 sin , z = iij,

- 1 ' 1, 1 '5 < 0, 0 ' • ' 2,r

the eccentricity, and it must be remembered that the
eccentricity e is related to the radial coordinate 4 as

e = 1/4 (9)

in the prolate system and as
e = /(o2 + 1)I/2 (10)

in the oblate one, respectively, where 40 is the value
of 4 on the surface of the spheroid in each system.

It is worth noting that in the limit when the semi-
focal distance I becomes zero, both the prolate and
oblate spheroidal systems reduce to the spherical
coordinate system and that, for I finite, the surface 
= constant in each case becomes spherical as ap-
proaches infinity; thus

74 r, 11 cosO, as 4 -o , (11)

where r and are the usual spherical coordinates.
Furthermore, as the eccentricity of the ellipse ap-
proaches unity the prolate spheroid becomes rod-
shaped, whereas the oblate spheroid degenerates into
a flat, circular disk. The practical utility of the
spheroidal coordinates may be surmised from those
facts.

Solutions of the vector wave Eq. (2) are to be
formed from solutions of the scalar wave equation by
means of the procedure set forth by Stratton. 7

The scalar wave equation
V20 + k2 = (12)

is separable in the spheroidal coordinate system, and
three second-order linear ordinary differential equa-
tions result, one in 77, one in , and one in 0. The so-
lutions of Eq. (12) in the spheroidal coordinate sys-

x
= 0

(6)

(7)

for the prolate system and with
- 1 5 7 1, 0 -- < O, 0 <:s 0 2 7r (8)

for the oblate one. In all pairs of signs in Eqs. (6)
and in the following expressions, the upper sign cor-
responds to the prolate spheroidal system and the
lower one to the oblate system.

The size and shape of the ellipse are specified by
such two quantities as the semifocal distance I and

2io
0laed

Z

Fig. 1. Coordinate system for scattering by a prolate spheroid
with semifocal distance 1. The prolate spheroidal coordinates are
77,qO. The z axis is chosen as the axis of revolution. The incident
plane contains the incident direction and the z axis. The x axis is
in the incident plane; for the TM mode, E is in the incident plane;
for the TE mode, H is in the incident plane. The incident angle 
is the angle in the incident plane between the incident direction

and the z axis.
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tem are the scalar spheroidal wavefunctions. For the
sake of completeness and to facilitate the explanation
of notation, we shall, in this section, briefly review
some basic properties of the spheroidal wavefunc-
tions mainly according to the comprehensive text by
Flammer.9

The solutions of the equation in 0 are eim0, cosmk,
and sinmq5. Obviously, in the present work, the sep-
aration constant m must be an integer, which we can
restrict to positive or zero values (m = 0,1,2, . .

For the equation in -q,

d-[1 - X2) dSn. ] + (X(") ± C2n2-r_ 2 )Smn() =0,
T77 d77 77 ~~~~~~~~~~~(13)

where
c = 1ok, (14)

and Smn(ii) is the spheroidal angular function of
order m and degree n, and the solutions of the first
kind are used, since only these solutions are regular
throughout the range of 7(-1 < 77 • 1). In Eq. (13)
Xmn is a separation constant, which is a function of c

defined by Eq. (14). Those discrete values of Xmn(C)
(n = m, m + 1, m + 2, .. .), for which the differential
equation admits finite solutions at 11 = i 1, are the
desired eigenvalues. The eigenvalues Xmn(c) and the
associated eigenfunctions Smn(C; W correspond to the
prolate system. Replacement of c by -ic leads to the
oblate spheroidal eigenvalues mn(Hc) and angle
functions of the first kind Smn(-ic; 77), where and
hereafter i = (-1)1/2. The prolate and oblate angle
functions can be, respectively, expressed in such infi-
nite series of the associated Legendre functions of the
first kind as

and

Smn(C;7) = x drnn(C)Pm+rm(7)
r=O, 

Smn,(- ic; ) = E' drm"(- iC)Pm+rm (),
r=O, I

where drmn(c) and drmn(-ic) are the expansion coef-
ficients relating to the prolate and oblate coordinate
systems, respectively. The prime over the summa-
tion symbols indicates that the summation is over
(only) even values when n - m is even and over
(only) odd values when n - m is odd. Thus, the
spheroidal angle functions depend not only on the
angular component but also on the characteristics of
the medium c. In the spherical geometry, however,
the angle functions reduce to Pnm (7), which are not
dependent on c.

From the theory of Sturm-Liouville differential
equations, it follows that the angle functions Smn(77)
form an orthogonal set on the interval -1 < w7 • 1.
Thus,

f Smn(77)Smn.(77 )d 7 = n'X (17)
-1 .Amn =l')

where Amn is the normalization constant and given by

2-(r + 2n)! mn 2 (
A =n = (2r ± 2m + 1)~r(8

The radial functions Rmn(4), which satisfy the dif-
ferential equations
d [(Q2 1) dmn(t] - [Xmn- C22 ( 2 i)]Rm(t) 0,

(19)

are normalized such that, for c - , they have the
asymptotic forms

(20)

(21)

(22)

(23)

R.,,(') ,t ICos (C -n 2 I7r

R.,,(2) ,ICtsin -n 2 I7T)

n CT [ (C 2 ) ]'(3) 1 [in + 

ct L\i 2 /1

where the superscripts indicate which of the four
kinds are being referred to. The appropriate expan-
sions in terms of the spherical Bessel functions are

Rmn 'l(c;t) = / [, (r !d (C)] } [ 2 ]/2

(24). E ,ir+n-mdmn(c) (r 2m)! Zm~r'(cO
r=O r 

for the prolate radial functions and

Rm,'J'(- ic;it) = {1/ [ E + 2m)! drmn(.l

X [2 + I ]m/2 z 'ir+n-mdrmn(_ iC)(r ± 2m)!

r=Or (25)

for the oblate ones, where Zn(ji)(c) is the nth order
spherical Bessel, Neumann, and Hankel functions of
the first and of the second kind in order of j = 1, 2, 3,
and 4, respectively.

The spherical Bessel functions are regular in every
finite domain of the c4 plane, including c4 = 0, where-
as the spherical Neumann functions have singulari-
ties at the origin c4 = 0, where they become infinite.
We shall, therefore, use the radial functions Rmn()
but not Rmn(2) for representing the wave inside the
spheroid and the incident wave. At very large dis-
tances from the spheroid, on the other hand, the scat-
tered wave approaches a spherical diverging wave
with center of the spheroid as its center. Thus, from
the asymptotic behavior Eq. (22), the third kind
function Rmn (3) is suitable to represent the scattered
wave.

It is important to note that, as seen from Eqs. (13)
and (19), the differential equations for the oblate
spheroidal system can be obtained from those of the
prolate system by the transformation

c - ic C't it, (26)

and vice versa. We shall use this transformation in
the sequel to go from one system to the other.

The solutions of the scalar wave Eq. (12), which
are used in the present study, are given by

We (c;17, , Up) = Smn(c;7 )Rmn3 (c; t) . m~p, (27)
0 mn sin

for the prolate spheroidal system, and by
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qe 1 1(-c;p7, it, <P) = Smn(-iC;?7)Rmn)(1..ic;i)CS mo, (28).mnsi

for the oblate one, respectively. In these equations
the superscript j takes the values 1 or 3 depending on
the usage of the radial functions of the first or third
kind, and the suffixes e and o refer to even and odd
dependence on 0 (i.e., cosmic and sinmqe), respective-
ly.

From these solutions of the scalar wave equation
the following solutions of the vector wave equation
can be formed 7 :

Mmn =vx (a, oPmn)y (29)
and

Nmn =k V Mmn, (30)

where the vector a is an arbitrary constant unit vec-
tor (a = e) or the position vector (a = r). The vec-
tors Mmn and Nmn are solenoidal; then, the field vec-
tors E and H can be expressed in infinite series of
them. The vector function Mmn and Nmn are also re-
lated by

Mm = k- V x Nn- (31)

In this study, we adopt the vector spheroidal wave-
functions

Me randNe r
,mn 0 mn

which are formed from Eqs. (29) and (30) by
the scalar function Eq. (27) or Eq. (28), depei
upon whether the spheroid is prolate or oblate
by setting a = r, where r is the position vector.
explicit expression for the components of the s
oidal vector wavefunctions are listed in Flam]
book (Ref. 9, p. 74-77).

From Eqs. (11) and (22), it can be shown tha
asymptotic forms of Mmnr(3) and Nmnr(S) in
cases of the prolate and oblate system, as -

come, by neglecting the terms of order higher
1/r, as follows:

Me r(3) ( )n. . mSn(COS ) 1 ikr sin
om n, sin 0 kir (-1) os

m mn, dO kr sin

NC r(3 ir( ) dSmn(COS e) 1k CO. O
, mn,,? dO kr sin

n, 3) - (i)n m Smn(co 0) ikr s "lo.
0m~ sin kr (- )cosf2

(33b)

The radial components of Mmnr(3) and Nmnr(3) for
large values of c tend to zero, then the scattered
wave represented by Mmnr(3 ) and Nmnr(3 ) becomes a
purely transverse wave at a large distance from the
spheroid, as it must be.

IV. Series Expansion of the Field Vectors

It is assumed that the incident plane wave of unit
amplitude is linearly polarized and that its direction

of propagation makes an angle v with the positive z
axis (Fig. 1).

We shall define, for oblique incidence ( s< 0), the
incident plane as the plane specified by the z axis
and the direction of propagation of the incident
wave. The x axis is taken in the incident plane, and
then 0 = 0 in that plane. When v = 0 (parallel inci-
dence) particularly, the x axis is taken to the direc-
tion of the electric vector of the incident wave propa-
gating along the axis of revolution.

For oblique incidence, the polarized incident wave
is resolved into two components as shown in Fig. 1:
the TE mode for which the electric vector of the inci-
dent wave vibrates perpendicularly to the incident
plane (case 1), and the TM mode for which the mag-
netic vector vibrates perpendicularly to this plane
(case 2). For v 5d 0, therefore, we shall consider two
cases separately. At the parallel incidence, however,
case 1 and case 2 yield the identical results due to the
symmetry with respect to the incident wave.

Flammer9 has developed the expansion of the po-
larized plane wave, propagating in the x,z plane to
the direction making an angle with the z axis, in
terms of the prolate spheroidal vector wavefunctions

Me r(l)(c;71, c , c) and Ne rl)(c;77 , P)
o 0 mn

as follows

eexp[ik(x- sing + z cost)]

-_if[gmn(fg)Memnr()(c,77, I + )])M,, n nm
(34)

where the expansion coefficients fmn(¢) and gmn ( 0)
are given by

fm d~m = Pm +r (os 3)
Amn rO,1 (r + m)(r + m + 1) sin 

)2(2 -,.m) E
gmn 

'm? r=O, I
drrn dPm+rm (cOs )

(r m) (r m 1) d~- (36)

and the symbol

m, n

(33a) means the double summation over m and n as

00 X
m=O n~m

When r = 0, all the coefficients with m # 1 vanish;
and it follows that

ft,(0) = g,(0) = 2A1 n-' d,
r=O, I

(37)

so the summation over m reduces to the single term
with m = 1 throughout the following equations.
This wave can also be expanded in terms of the ob-
late spheroidal vector wavefunctions, and the same
results are obtained by replacing the prolate spher-
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oidal vector wavefunctions with the oblate ones c
the transformation Eq. (26).

The incident wave of unit amplitude polarize
the TE mode (case 1) is described by

(i)E = - e, exp[ik 1) (x sing + z cos ),

i)H = (cos , e- sinr e)XC1 )exp[ik ( (x sin + z cc

= (iko)-1-V x (E,

where e, ey, and e are unit vectors along the
and z axes, respectively. With the help of Eqs.
(30) and (31), the above incident field vectors
written in the form

i)E Z Eging()Menn r() + ifin(t)Noinr( ], )
m, n

i)H =S(1)E inyfmn(0mnr l)igmn()Nm i]
m, n

Similarly, for the incident wave polarized ir
TM mode (case 2), the expression for the field
tors becomes

(i)E = E- n~mn(0)M.nn r () - igmn(L)Nen() 
in, n m

( -)H =-J) E ing1 n(0)Memn1 r( ) + ifmn(C)Nmn (t)]- 
m, n

In order to apply to the boundary conditions,
necessary to generate both the TE and TM mod
the internal and scattered waves correspondin
each polarization mode of the incident wave. 
are set up in the same form as that of the inci
wave as follows:

Case 1 (TE mode):

(s)E = E in(1, ,mnMemn r(3) + i 1,,mnNomn r() )
in,f n ( >

(s)H JO(1) ~ na 1 r (3) - ( 1 inenr( 3)
_H(I in((l mnMomn(3- ilmnNemn 

m, n

and

(t)E = E in (6linnMeinn(I) + iY1,Nmomn r(1) )
m, n Q 

(t)H J ( (I) E j"6 nMomnr(i) - i, nNemn D))

m, n

Case 2 (TM mode):

(s)E = in n( 2, mnMomn r(3)- i 2 ,mnNemn r(3))
m, n 

(s)H -_ 5(1) Ej jn(12, nMemn r(3 ) + iC 2,mnNomn r(3))

( > 4o); (44)

and

(tE - in (Y2,nMonnr(1) - i 2 , mnNein () 
m, n

t "H - _CI in (652mnMemn'" + iy2,mn~m 
mn

( < o); (45)

where amn, /3mn, Ymn, and mn are the unknown coeffi-
cients with suffix 1 or 2 referring, respectively, to

case 1 or case 2, and must be determined to satisfy
the boundary conditions.

V. Formulation of the Boundary Conditions

The boundary conditions mentioned in Sec. II are
written in the equivalent form as

Obaksj (t)E + (s)E = (t)En, (E 0 + (s)E0 = (tE 0 ,

(39) at 
Hr + (s)H = (t)H,, ()H,, + (s)H = (t) ) = 40.

(46)

34), By virtue of the field expansions [Eqs. (40)-(45)],
are these conditions can be expressed explicitly in terms

of the spheroidal wavefunctions. The resultant
equations must hold for all allowed values of the

(40) coordinates -1 < < 1 and 0 S 0 < 2 7r, and may be
used to determine the unknown coefficient amn, /mn,

'Ymn, and mn. Because of the orthogonality of the
the trigonometric functions cosmic and sinmo, in each

vec- expansion, the coefficients of the same 0-dependent
trigonometric function must be equal, component by
component; the equalities must hold for each corre-
sponding term in the summation over m. For the

(41) summation over n, however, the individual terms in
the series cannot be matched term by term. This is
the cause of difficulty in determining the unknown

it is coefficients.
es in The method used is as follows: the equations that
g to stand for the continuity of 77 components are multi-
'hey plied by (Qo2 TF7

2 )5/2 = [(o 2 T: 1) + (1 - 772)]5/2, and
dent the equations for 0-components by (Qo2 + 1)1/2 (o 2

T 772), where these multipliers are positive in the full
range of i7; then all factors that are functions of 77 are
replaced by the series of the associated Legendre
functions of the first kind, which are orthogonal

4W); functions in the interval -1 < 7 < 1. For m 2 1, the
nine functions of 7 appear, and they can be expanded

(42) in terms of Pml+t m -1(77) as follows:

(a) (1 _ 772)1 /2Smn'(7 7) =

(b) (1 _ 772 Y-1 /2Sja(fl) =

(C) 77(1 - 72)/2Sm(,7) =

YAmn - Pm i.,"-'(?7)
t =O

E Bt inI+t
t =0

E Ctm Pm -pm_ +tm ( )X
t=O

(d) 77(1 -
2 )-' 2 S n,(77) = ZDtin Pm im-(77),

t =O

(e) (1 - 772)3 /2 Smn(n)

(f) 77(1 - 7 )3 2Sm,(77 )

(g) (1 - 2)1/2 dSm.(i7)d721/

(h) 77(1 2)i/2dSmn(?1)

(i) (1 - 23/2dSn()7)32 d 77 .

= E Etmn Pm ji+tn-I(),
t=0

= E Ft . Pm-i+t (),
t=0

= x, Htmnn- pim-ni( 7 ),
t=0

= E Ht _In * mt 1-(o7,
t=O

= EInn .Pin+t"-I (1) .
t =O

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

For m = 0, however, only four functions are needed
and can be expanded by the functions P+tl(n) as
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(c') 77(1 - 2)1/2S 0,(77) = ZC In- Plt (n),
t=O

(f') 77(1 - 2)3/2SO(,7) = i Ft0 "-P1~t1('7),
t=O

(g') (1 - 72)I/ 2 dSn(J7 ) = ZGOnp it(77),
i ( 2 d77 t=0

(i') (~17 2)3/2dSOn(7)-d t=0

(56) Dtt n= Nm-l 1,,-lt Z d
r=0, I

(57)

(58)

(59)

The coefficients of these expansions are functions
of c defined by Eq. (14) and can be evaluated by
using Eq. (15) or (16), depending upon whether the
spheroidal system is prolate or oblate, to express the
angle function Smn(77) and its derivatives in terms of
Pm+rm(,?) and its derivatives. The evaluation of the
integrals is somewhat troublesome, but the work is
straightforward. Only the results are included, and
these are listed below.

For m 1,

Atmn = Nt 1,m-('. Z drin
r=0, I

,+1x J (1 - 772)1/ 2 Pminr(?7)Piljti-l(77)d77, (60)

0, (n - m) + t = odd,

(t + 2m - 1)(t + 2m) dtimn
= (2t-+ 2m + 1)

(2t +2m +3) d 2 mn, (n - m) + t = even,

Btm = Nm-im-i+t- * _ dr,

r=0, I

P+i
x (1 _ 772)-/2Pm+rm(77)pmi+t-i (7)di7 , (61)

(0, (n - m) + t = odd,

+ 2w - 1) ' dinn, (n - m) + t = even,

Ctm = NM-11M-1t drr= , 
_ 772)1 /

2
p m i(7)inlti1( 77)d7l, (62)

(0, (n - m) + t = even,

(t + 2m -1)(t + 2m) (t + 2m + ) d mn
(2t + 2m +1) l(2t + 2m + 3) 

(2t + 2m - 1)dt-1j

t(t -1) r ( + 2m -1) dmn
(2t + 2m - 3) L(2t + 2m - 1) -

(t 2) m
+ - dt

(2t + 2 5)

( - n) + t = odd,.

+1x f7 w(I _ 772)-I/ 2p.m ~~mi-(77)d (63)

(os

= tdt imn +

(n - m) + t = even,

(2t + 2m - 1) ' dn?,
r=t l

(n - m) + t = odd,

Et = Nm im-I+t~ Z 'drmn
r=O, I

0,

xf (1 - 2)3 /2 i+rm(77)Pmin+ti-i(77 )d7 7 , (64)

(n - m) + t = odd,

(t + 2m - 1)(t + 2m)(t + 2m + 2)(t + 2m + 1)
(2t + 2m + 1)(2t + 2m + 3)

[(21 ±1dt m (1dt 2n 1
x h(2t + 2m + -I) (2t + 2m + 5)]

2t(t - 1)(t + 2m)(t + 2m - 1)
(2t + 2m - 3)(2t + 2m + 1)

r dt-2 nn dtmn 'I

[(2t + 2m - 3) (2t + 2m + 1)]

+ (2t t(t - 1)(t - 2)(t - 3)
(2t + 2m - 3)(2t + 2m - 5)

r [ dt-4. n dt 2 e1eI,
xL(2 t--+2 m - 7) - (2 t + 2 m - 32

(n - m) + t = even,

Ftn = Nm-lm-l+t d
r=0, I

x f (I- 2) 3/ 2PmrM(77) Pminlt-l(7)d7, (65)
-I

0, (n - m) + t = even,

(t + 2 - 1)(t + 2m)(t + 2m + 1)
x (t + 2m + 2)(t + 2m + 3)

(2f + 2n + 1)(2t + 2 + 3)(2t + 2m + 5)

X [ dt1 in _ dt+3 ]
ht + 2 + 3) - 2t + 2 +7

t(t - 2m)(t + 2m + 1)(t + 2m)(t + 2m - 1)
(2t + 2m - 3)(2t + 2m + 1)(2t + 2m + 3)

r dt-1 mn dt+,m 1
x[(2t + 2m - 1) (2t + 2m + 3)1

t(t - 1)(t - 2)(t + 2m - 1)(t +4m - 1)
(2t + 2m - 5)(2t + 2m - 3)(21 + 2m + 1)

[(2t + 2m -5) (2t + 2m - 1)1
t(t- 1)(t - 2)(t - 3)(t - 4)

+ (2t + 2m - 3)(2t + 2m - 5)(2t + 2m - 7)

[( dtmn dt 3mn

(0z - ni) + t = odd,
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G t = Nm-1 ,m-l+t 'drm'
r=O, I

+l1 _ 7r2)t/2 dPmorm(77) p +m-I(7)d77, (66)

0.

1 r (t+1)d On

(2t + 1) L(2t + 3) t+i

n + t = even,

+ (2 dt ]

0 (n - m) + t = even,

- t(t + m - )dt1 mn + m(2t + 2m - 1)

5' drmn, (n - m) + t = odd,
r=t +l

N 1, 1-IE d mn

r=O, I

1 72)1/2 dPn+rn(77)p In l(d7)

(n - m) + t = odd,

____ + 3) dt. n+(1+ 2) 01~ O

(2t + 5) [ (2t + 7) dt+3 + (2t + 3) d+ ]

n + t = odd,

+1

F, n = N, I+t' 'd' .11 (1 -
r=O, I f-I

0

(t

t(t - i)(t + 2m - 2) d'n
(2t + 2m - 3) t-

t( - 1)(2t + 2m + 1) + (t + 2m)(t + 2m -
2(2t + 2m + 1)

m(2t + 2m -1) l drnn,
r=t +2

i)dtn

(n - m) + t = even,

772)3 /
2p (7)P+ti (77)d77,

(71)

n + t = even,

+ 3)(t + 4)(t + 5) F dt+1
2t+ 5)(2t + 7) L(2t + 3)(2t + 5)

2dt+ 3 On

(2t + 5)(2t + 9)

3t(t + 3)

dt2 +n
+ (2t + 9)(2t

r dt n

+ 11)I

(2t + 1)(2t + 5) L (2t - 1)(2t + 1)

2dt+l n dt =3
0 1

(2t + 1)(2t + 5) (2t + 5)(2t + 7)1

t( - i)(t - 2) dt-
(2t - 1)(2t + 1)L(2t - 5)(2t - 3)

2 dt-( 1
(2 t - 3) (2 t + 1) 

It" N jm -I. Y rrmn
r=O, I

fj (i - 772)3/2 dPm+r(7)p.m-1()d

0,

(t

(68)

(n - m) + t = even,

+ 2m)(t + 2m - 1)
(2t + 2m + 1)

F (t + m + 2)(t + 2m + 1) I mn

L (2t + 2m + 3) t.l

t(m + t - 1) dt mn

(2t + 2m - 1) _1

t(t - 1) [(1 + m)(t + 2 - 1) dtn
(2t + 2m - 3 L (2t + 2m-)

(t- 2)(t + m -3) din_,1

(2t + 2m -5) t 3 J.
(n - m) + t = odd,,

where Nm-lm-l+t is the normalization constant for
the function Pm-l+tm-l(?7) and given by

NM-I, m-l +t = f+ [pM_,.,--1(,q)]2 d77
-1

2'( + 2m - 2)!
(2t + 2m - i) t! (6

For m = 0,

= = N, t-i > 'dOn , 7(i _ 772)i12Pr0
(77)Pi+t

t
(77)d?7,

r=O, 1 -I

= { d~~~+1
0
'~~,

OnO

On = N1,1+t-
1 F dron f(1

r=O, -I

I 0,

d 1 On 1

(2t + 1)(2t + 3) ]'
n + t = odd,

- 77 2)1/2 dPr0 (77) Pl+t(17)dq,

(72)

n + t = even,

n + t = odd,

- 77 2)3/2 dPr(71) t1(R)d

(73)

n + t = even,

[(t + )(t + 2) d +0n t(t - 1) dt-nl
T + iL (2t ± 3) - ' (2 1-i- ) I

- 1 r (t + 3)(t + 4) d n

2t + 5L (2t + 7)

( + )(t + 2) d On 

(2t + 3) d 

(n + ) = odd,

where

Nl,+t = f"[Pi+et( 7 7 )]2d77,

2(t + )(t + 2)
(2t + 3)

Inserting Eqs. (47)-(55) for m 2 1, or Eqs. (56)-
(59) for m = 0, into the equations representing the
boundary conditions, and then considering the ortho-
gonality of the associated Legendre functions of the
first kind, it can be seen that the individual terms in

') the summation over t must be matched term by term.

(74)
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For easier manipulation of the equations, we shall
here employ the following substitutions, for m 1,
defined by

U., J) (c ()) = moRm ,,((c (h) ; O)[(tO - 1)2 Btn(c(h))

+ 2o2 - )A tmn(C(h)) + EtMn(C(h)), (75)

(JOt(c(hO) - i J m iR (iC(h).~ )[(02
mn~ ~ C g T(o2 - 1) m t 

i) 2 Dt mn(c(h)) + 2(go2 _ i)Ctmn(C) + Ft n(C(h)]

Rmn, (c (h; ) [xn(C(h)) _ (C(hO%0 )2 + M2 ]

X [O2 - )Ctmn(c(h)) + Ftmn(c(h) ] + tO(QO2 - i)

X [dRin)(C(h);4)] [2ctmn(c(h)) + (2 - )Gtn(c(hO)

+ Imn(c(h))] + Rn (iC(C(h);to)[(o2 _ 1)2 Gt n(C(hO)

+ (34 2 - )Itn(c(h)]}, (76)

Xmn (JO t(C(h)) = - ORin(J (C(h );to)Gtmn(c(h))

[dRmn,,(j)(c(hO;)] * Ctmn(c(h), (77)

Yin (, t(C(h)) = -IMr m ((to2 - 1)IRmni(j(c(h);to) [Atn(C(hO)
CW

+ Ht n(c (h))] + {Rmn(j) (C (h) ;4)

+ o[dRinn'i)(c(h);t)/d4]0}Btmn(c(h))) (78)

in the prolate spheroidal system and

UMn(j)' t(-iC )) = M oRmni)((ic(h);ito)[(o2 + 1)
X( Bt(-~C(h)) - 2(t2 + )A'in(-ic(h))

+ Etmn(_iC(h))], (79)

Vmnti)' (iC ) =7n{ - RmT (i )io

X 2t + )2Dinn(_iC(h) - 2(to2 + )Ctmn(jiC(h)

+ Ft in(_iC(h)] + Rmnj (-iC(h ;iO)[X m(iC (h))

- (C(hO)
0
)2 _ _ ] [Qo2 + )Ctinn(-icO)

- F.in( t ic(h))] + o02 + 1)dRnn(-ic 

x [-2Ct`n(-iC h) + (Qo2 + )Gt mn(_iC(hO)
- Itnn(ic(h))] + Rn ,,i (-(ic(h);io)[(o2 + 1)2

G nniC(h)) - (3 + )tin(C(h)]}, (80)

Xmn j)' t(- iC(h)) = oRimnj i)(-ic h); itO)Gtinn(_ C (h-))

+ [dRmin(-yiC(hO;i)] Ctinn(_iC(h)), (81)

Yni t(_)..(hO) = j- f71( (2 + 1) Rmn(j)

(-ich;iw
0 )[Atm(- ic(hO) + Htin,(-ic(h))] + {Rmni)

X (ic(h);io) + O[ dRmn (-iC(h);it)]}

X B mn(- ic ()) ) (82)

in the oblate one, respectively. In these expressions
the superscript j takes, as already mentioned, the
value 1 or 3, according to the radial functions of the
first or third kind, and the superscript h on c is I or II
referring to the outer or inner region of the spheroid,
respectively. For m = 0, these parameters are found
to become

UOn(j) t = YOn(J) t = 0, (83)

Von~ t = 7iT {F RO,,~)[XOn, (c(h )2][(Q02 )C On ± Ft0 n]

2 1) (dRn ) f±2Ctn + (2 O i)Gtn n]

+ ROn(j) [( 0
2 1)2 GtOn ± (3 o2 :F )It~n] }, 84)

Xon(j)t = 0ROn(j)G G [ dRo,n CtiO .
I C O

(85)

The parameters Umn() t and Vmn() t correspond to
the components of the vector functions Mmnr(J) and
Nmnr( , and also Xmnn()t and Ymn(W) t are related to
the components of them, respectively. With these
parameters, the equations for determining the un-
known coefficients in the prolate spheroidal system,
for instance, are now written, for each value of m, in
the form:

Case 1 (TE mode):

En: in[Vmn (3),t (C I))- 1imn + U(3),t((I)).pIn
n=m

= - Z in~fVn("tC) V (O),t(c(O) + U Un() (OOCt(c())]
n=m

E0 : in[Ymn (3)' t((I) )- mn + Xmn (3), t(C(I)) (, mn
n=m

y Ym(')'t(C Q U VI, mn - X.(I' (C(I ) 6,,mn

(86a)

i1jfn(0). Y ('t(c() + 9mn(0 Xmn '(C( ))], (86b)

H,: U inu [U(3t(c(IO) a1 in + V (3n

- 3umn (1Ot (C (I ).y I, mn- 3- Vmn(1)t(c(II))-t mn]

- - Z in[fn(&). Umn('t(C(I)) + n(O) V n(l)'t(C(IO)] (86C)
n=in

H0 : E in [Xn( 3 ),t(c(I)a ,,, + Y O3t(c(I).-
n=m

3CXn,(I)t(c(II))y, - CYmn(f) (C ) dI,.n]

- mfn(0).xnn(,,'t(C(IO) + gn()ymn"(lO (C (c(XO)]
n=m

(m = 0,1, 2.... ; t = 0,1,2, .. .) (86d)

Case 2 (TM mode):

E,: i n[Umn(3)t (C()).a 2,nn +Vmn 3)', (C (I))2,mn
n=m

- U.()Ot(c(I1))Y 2 ,, - V ()t(C(II))6 ]

= - i[fn(0)Un t(c)
n=m

+ mn(0;Vmn( )'t(CI)], (87a)
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E: Fin [X,,n 3 t(C I).a 2,imn + Ymn 3), t (c IO).I2,mn

- X,,()t((II)).Y2,n - Ym,()'t(C(I ). 62,,n]

= - Z in[fn()'Xmn()'t(C t)
+ g,,()yn,n(Ot(C(IO)] (87b)

H: E inVn (3 t(C(I))a2,mn + Un (C ) 32 n,,
n=m
CVi(lO)t(C(II))*y2,mn - 3CUmn)' t(C(I). 62,mn]

= -_ i [fmn()Vnn" (c )
n=m

+ g,(n)Un(l),t(C(I))], (87C)

H,: in[ Yn (3),t(C J12,.inn ± Xn (3 )"t(C I22,mn
n=m

- JCY (l),t(C(IIn) - 3CX,,(lO)t(c(IIO).62,n]
--m in[fn()Y,(i(c()

n=m
+ gn()'Xn(' t(C(O) (87d)

(m = 0,1,2....; t = 0,1,2,...)
where

(88)

The parameter X is the (complex) refractive index of
the spheroid relative to the surrounding medium.
The equations in the oblate spheroidal system can be
obtained for each case of the polarization by replac-
ing the parameters Umn(I)t, Vmn(I)t, Xmn(I)t, and
Ymn()'t for the prolate spheroidal system with those
for the oblate one.

Thus, the equations used to determine the un-
known coefficients constitute an infinite system of
coupled linear equations with complex coefficients.
These equations are valid for each value of t, so that
by taking t sufficiently large an adequate number of
relations between unknown coefficients is generated.
The convergence of the infinite series is expected
both physically and mathematically, as shown by Sie-
gel et al.6 and by Wait.10 Practically, the infinite
system of equations is truncated to a finite number of
equations in the same number of unknown, and the
standard numerical techniques are employed to solve
them. It is also worth noting that, because of the
relations

VI. Scattered Fields at Infinity

Equations (42) and (44) for case 1 and case 2, re-
spectively, with the appropriate values of the expan-
sion coefficients determined by the method stated in
the previous section, are the expressions for the field
vectors of the scattered wave, which are valid for all
values of the coordinates (nk).

Usually one is more interested in the behavior of
the scattered wave at relatively large distances from
the scatterer. The scattered field at infinity can be
deduced by taking the asymptotic form of (s)E and
(s) H, as c (I)t under the assumption that c(I) =
27rl/X(I) does not equal zero; hereafter c(I) will be
called the size parameter of the spheroid, in analogy
to that of Mie scattering.

By virtue of the asymptotic behaviors Eqs. (32a)-
(33b) for the vector functions Mmnr(3) and Nnnr(3),
one obtains such asymptotic forms of the scattered
fields in each spheroidal system as:

Case 1 (TE mode):

- (sE 1,, = (H 00 /3)= 2I r expi27Tr/X12 )

X E 1, mn dS,,(cos 0) + si,,n(n Sio) 0 sinmo, (9ia)
m,,,Llin, dO f3,,n sin&

(s)Ejo = (S)H/3() xpi2r/x()

X Yja,"'.1nSJ,,COSO) dSn,,(cos0) 1om
E [0 lmn 1 snS + :' -dO (coSm(P

in,, sine d(9ib)

Case 2 (TM mode):

(s)E2,,7 = -H 2 0 /C) =2- expi2mr/xA'0

X Zm Sn' , (CS0) dS,, (cos0) 1
2,inM sinS + 02m dO J c05sl24,

(92a)

(s)E2 0 = H2,,,/' = 2r expi2grr/01

X Y 2Fmn dS ,(cos 0) + 2,mnn Smn(COSO) sinms,(92b)
." do +I 2~, sinS I

U__(j),t - Ymn(j)t = 0, for (n -in) + t = odd, (89)

and

Vn(j)t X._U)Ot = 0 for (n -m) + / = even, (90)

which are deduced from the behavior of the expan-
sion coefficients Eqs. (60)-(68) or Eqs. (70)-(73) and
the definition of these parameters, the term involving
even-ordered functions (n - m + t = even) are com-
pletely decoupled from those of odd-order (n - m + t
= odd), and this saves a great deal of labor needed to
solve the system as discussed in detail later.

Thus, in principle, the problem of scattering of the
electromagnetic wave by a homogeneous spheroid has
been solved. The fields not only scattered but also
within the spheroid can be obtained at once.

where the radial components (s)Et, (s)Ht fall off as
(X(I)/r)2, so that they may be neglected in the far-field
zone. The components (s)E,3 and (s)E0 are perpendic-
ular to each other, and the phase relation between
them is arbitrary; the scattered wave will, in general,
be elliptically polarized.

For the sake of convenience, we shall here intro-
duce the amplitude functions and the intensity func-
tions for oblique and parallel incidences separately.

(i) Oblique Incidence ( # 0)

At oblique incidence, the amplitude functions for
the incident wave of the TE and TM modes (or case 1
and case 2), respectively, are written in the form:

Case 1:
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TjI(0, p) = [, ,,.,,(0) + 31,m ,,'xm,,(o)I Cs7i(n, (93)
m' n

Tf2(0,0) = 5 7 + 3,,'amn(O)1 sinrn¢, (94)

Case 2:

T2i(0s0) = CEc2 ,,,.-Xn(1 + /32,mn- (mn(0)] sinin4,, (95)
in

T22(0,0) = E Ec 2,,,.u(0) + o2,snmOX,(O)] cosnz(, (96)
m, n

where mn (0) and Xmn (0) are the angular functions
that are depending on the size parameter c (I) and are
defined by

r,,(Q) = o1S,,, (coso)/sinol, (97)

x.in(O) = (d/d0)[S,, (cos0)1, (98)
and these functions, when 0 = 0, 7r, become zero ex-
cept the ones with m = 1.

Thus,

Gm(0) = Xm(°)
0, (n 1),

Z '(Y + 1)(r + 2)d"r1 , (in = 1).
2r_0,1

(99)
The amplitude functions T, T22, T 2, T21 corre-
spond, respectively, to the elements Al, A2, A3, and
A4 of the amplitude matrix discussed by van de
Hulst (Ref. 11, p. 43).

The intensities of scattered light, at infinity, polar-
ized in the q7 (or - 0) and 0 azimuths are given by:

Case 1:

I e = (s)Eio * (s)E1 ,0 * = ( 21 X47r2 r 2 )i11(O,p), (lOOa)

II, = ()EI 7, ()E, 7?* = (X2(I)/47 2r2 )ii2 (O, ). (lOb)

Case 2:

12, = (s)E2 0 -(s)E2,0 * = (A2110/4 7 2 r2 )i2 (0,0), (lOla)

'2, = (E 2,17 ()E 2, * - (k2(1)/472r_2)i 22(0, ), (l0lb)

where ()E * and (sE,* are the complex conjugates of
(.VE and (S)E,, respectively, and i 1 , i 2 , i 21, and i2 2
will be called the intensity functions at oblique inci-
dence and are written, in terms of the amplitude
functions, as

ill(¢)= | Tii(O4¢)12, (102)

i12 (e,0) = T1 2 (0,t)12, (103)

i2(,6) = |T20(,0)1 2 , (104)

i22(0,0) = IT 22 (0,) 212 (105)

The intensity functions i1 1 give the intensity compo-
nents of the scattered light, which is perpendicular
(TE mode) to the scattering plane specified by the
direction of the scattered wave and by the z axis,
where the incident light of unit intensity is also per-
pendicular (TE mode) to the incident plane contain-

ing the direction of the incident wave and the z axis.
The intensity functions i1 2 give the parallel compo-
nents (TM mode) for the same incident wave. When
the incident wave is of the TM mode, the intensity
components of the scattered light perpendicular and
parallel to the scattering plane are given by the in-
tensity functions i2, and i22, respectively. Thus,
the intensity functions i11 and i22 are the compo-
nents polarized in the same mode to the incident
wave, while i 12 and i21 are the cross-polarized com-
ponents.

(ii) Parallel Incidence (D = 0):
In this case, the scattered intensities are

I = (A2(I)/47r2r2 ). 1 (0) .sin 2p,

In = (X2 (')/47T2r2) . il(0) . coS20,

(106a)

(106b)

where i 1(0) and i 2 (0) will be called the intensity func-
tions at the parallel incidence, corresponding, respec-
tively, to the components perpendicular and parallel
to the scattering plane and are given by

i(o)= IZ [n. ynXln(0) O1n G,'n(0)1 12.
n=2

i2(0) = Y [ln * °n(0) + ll l() 
n=l

(107)

(108)

which are in a form similar to the intensity functions
for the scattering by a homogeneous sphere (Mie
scattering). The angular functions a,, (0) and Xln (0)
have the same behavior, respectively, as the angular
functions xrn (cosO) and Tm (cosd) introduced by van de
Hulst (Ref. 11, p. 125). The scattering plane is here
defined as the plane specified by the directions of the
incident wave (or the z axis) and the scattered wave.
Then the angle 0 just measures the scattering angle.

VIl. Extinction and Scattering Cross Sections

A. Extinction Cross Section
With incident wave polarized linearly, the extinc-

tion cross section Cext is proportional to a certain am-
plitude component of the scattered wave; the ampli-
tude is that which corresponds to forward scattering,
and the component is in the direction of the electric
vector of the incident wave.8"1

The amplitude component of the scattered wave in
the direction of the electric vector of the incident
wave ( = 0), for forward scattering (0 = ), is given,
for case 1, by

)(sE 01 I = - 2 0 expi2 Tr/x11 .T 1 (C, 0),
0=C'0=0 2

7Tr

2rr xpi27Tr/A(0) E iMumn(J) +
(109)

then, the extinction cross section is written as fol-
lows:

2(ID
Ciext = - Re I + imn-Xmn(0 (llo)

where Re denotes the real part.
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For case 2 (TM mode), one can obtain in a similar'
way

(10~~~~~~~~~~11C2,ext =- Re Z Ia2,mn,nn~,(0) ± 2,mn,,' xmn,(t0l

The extinction cross section C ext is naturally the
functions of the size parameter c (), the relative re-
fractive index of the spheroid e, and the incident
angle .

At parallel incidence (D = 0), using Eq. (99), the ex-
tinction cross section becomes

Similarly, the scattering cross section for case 2 at
oblique incidence is written as

C,! x
2 1 0 YE z z 

C2,sca = 4
7T =0 = nn

frInn'm Re(C12 ,,n ' %2,,n + I02,in ' 2,,n*). (118)

When ¢ = 0, the scattering cross section becomes

Csca = 4xT E E rAnn,',Re(ain,.iin,* + in' ln *)
4her n=1 tnt (119)

where the coefficient Hnngl is given by

Cext -( + r + 2) d 

X Re (tin + win- (112)

(B.) Scattering Cross Section

The scattering cross section Csca is defined as the
ratio between the rate of dissipation of the scattered
energy and the rate at which the energy is incident on
unit cross-sectional area of the scattering obstacle
and is given, for example, for case 1 at oblique inci-
dence by

Cisca = k(102 f[i(o) +

-(2 2r o[ I Tii(0, c)1 2 + Ti 2 (O,4,)12 ] sinodOdo.
(113)

Inserting Eqs. (93) and (94) into this equation and by
using formulas

2rT 2ir

f sinmo * sinm'pdPd = fo cosmw cosm'opdo
0

0,

-ff i,

(m = m')

(mn = in')

and

fi [cxm,,(0) Xmn(O) + amn(O) * Xmn(0)] sinOdO = 0

n = y 2(r + 1)2(r + 2)2

r=, i (2r + 3)

(120)

Vill. Discussions

(1) In the study on the dielectric coated prolate
spheroidal antenna, Yeh12 proposed a useful method
of handling the boundary-value problem, and his
method was used by Wait10 for the prolate spheroidal
antenna with a confocal sheath. The basic idea of
their method is to represent the spheroidal angle
functions in the dielectric regions as expansions of
the natural angle functions of the outer region. This
suggests, to our study, another representation for the
functions of 17, instead of the series expansions by the
associated Legendre functions of the first kind in
Sec. V, in terms of such angle functions in the ambi-
ent medium, of order m - 1 for m > 1, as
Sm_-,mi+t(c(I); w7) and of order 1 for m = 0, as
S 1 +t(c ( e); w.

For example, we write
(114)

(115)

the integral Eq. (113) can be evaluated, leading to

C ,sca = 4k2) E E E;
47T .=O n=m nm

X rnnnRe((ai,inn' a,mn' * + 0imn' 3,,nn*), (116)

where the asterisk denotes the complex conjugate
and the coefficient f is given by

,nnsn = - [amn(O)- mn (0) + Xn(O)-Xmn'(0)] sinOdO,

(0, in-nI =odd,

I , 2(r + m)(r + m + 1)(r ± 2m)! d n mn
r=O, 1 (2r + 2m + 1)r! r r

n - nI = even.
(117)

(1 - 772)'' 2S~, (hOj4 = E~7 n (t (hO )@Sm in-,in-+t( 
t=o (121)

where Atmn is the expansion coefficient with an ap-
pended bar to distinguish from Atm n in Sec. V, and is
given by

A tn (C (h) -. _i,._1.t i(C(1)).

- 2) 1 12 -S inn(C 110;77)-S inI , =t (c (10 ) d7

(122)

0, (n - ) + t = odd,

A~ , -~(1 0I)) X , dm-ilm-i+t(C()

I X=O,1 (2x + 2m - 1)

[ (2x + 2w + 1)x! 
[ 2 2(X±2m -2)! d _mn d n(hl

(2x + 2w - 3)(x - 2)! 1'

(n - m) + t = even,

where Am- ,mi+t(c(1)) is the normalization constant
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given by Eq. (18) for the angle function
Sm -,m -+t(c (); 77). The coefficient At-n is also re-
lated to Atmn by

At n(C(h) - A= l m+t1(')- E 'd i- 1 inlt(-(I))
X=0, 1

N-,, in-+X Atn(c( hO), (123)

where Nm-i,mI-+t is the normalization constant
given by Eq. (69) for the associated Legendre func-
tions of the first kind. In a similar way, we can ob-
tain other expansion coefficients in the same form as
Eq. (123) by using the coefficients for the expansions
in terms of the associated Legendre functions. The
method used by Schultz5 is, in essence, identical with
this approach.

The relative advantage of this approach over that
used in Sec. V remains to be investigated. As point-
ed out by Wait,10 it seems that when the properties of
the inner and outer regions are nearly the same, the
expansions of the angle functions in one region in
terms of those in another region may be highly con-
vergent, and that, for electrically large spheroids, the
expansion in terms of Legendre functions may be
very poorly convergent. We have calculated both se-
ries, Eq. (47) and Eq. (121), and showed that at least
for the values of c S 10 the rapidity of convergence of
the two series is almost the same and moreover the
values of expansion coefficients Atmn and Atmn are
nearly equal. This is evident from the fact that the
representation of the spheroidal angle functions
given by Eqs. (15) and (16) is dominated by the term
where r = n - m for those small values of c. There-
fore, so long as c is not too large, the expansions in
terms of the associated Legendre functions are pref-
erable to those in terms of the spheroidal angle func-
tions, because of the simpler form to calculate.

(2) When the spheroid is a perfect conductor or
- , the electromagnetic field cannot be sus-

tained within the spheroid and the boundary condi-
tion for a perfect conductor that the tangential com-
ponents of the electric vectors must vanish at the sur-
face

+ (s)E = 7? 0

E + (s)E = , ,
at = , (124)

is only demanded. Then the system of equations de-
termining the unknown expansion coefficients amn
and mn becomes, for each m, as follows:

Z i Vin,(3, t(C(I))'C1 inn + n(3>,t((1))

=- ifn()0'V ()'t(C' ) + ,,0').umn( ' (ct I)1
n-m

(125a)

inF Y-0) t(c. I) ±Ce1 + X,( 3),t(C(I¼ ) 01 1

- i n[f.,,(c)YMm
1

' (CI)) + -()X ' (C(I))
??in (125b)

(on = 0,1,2,...;/ = 0,1,2,....

for case 1, and

E in[U(
3

O t(C(IO)'Y
2 ±+ Vin(

3
O t(c(I))./

2 1.]

= -XZ in[f.(C).U-,n(,)
1

t(C(I)) + .n(0Vmn 1),t(C(I))1,
n=i

(126a)

i in[Xyn(3, t(c )C. 2 , n + n(3)t(c(I))2, ]
n=in

=- intff n(O.X(O't(C(O) ,n0Yn()tC()
(126b)

(m = 0,1,2,.. .; t = 0,1,2,...)

for case 2, respectively.
(3) By virtue of Eqs. (89) and (90), as previously

stated, one can divide the system of equations deter-
mining the unknown coefficients into two subsys-
tems: one that involves the even-ordered coeffi-
cients amn and lYmn (n -m = even) and odd-ordered
fmn and brnn (n - m = odd), and one that involves
a mn and Ymn of odd-order and Om, and bmn of even-
order.

When t = odd = 2s + 1 (s = 0,1,2, .. .), the system
of Eqs. (86a) to (86d), for example, becomes

Z/{i[Vin '3)2s+1 (C())-Y m,,n - V,,(b).2s+l ((II))
n=m

] + i+l[Un+,
2

s+ (C
1

)3 1 mnl

- Uin1+(1bO2 s(C(ir) ).6i1,n+1}

= - Z/fm??finn(D)vE77h1Ot2s+l(c(I))
n=m

+ i ( 1(Un+1 (127a)

{in[.Yn( 3 ,2s(C() )*Ct m n - C)((), 2s+ 1(C(I))

*Y1,i] in+lY+,(3) 2 s((I ).101,,mn+l

3C Yn+i( , (C1 ) o mn+l ]} [f m ,()

.x.,2(C() + i (10 mn+.(0)Y (l),2s+l(c(IO)]

(127b)
T' 1jin[+lu (3),2selc(1)c

,,= mn~ in )-0)'1 mn~l] + in[V (3),2s+1(C(I))

C- 3CV_,(lO)2 s (c(bO).6 1,nnl}

= - [i (fn+(Un+1( 1),2s1 (c()
n=m

+ im,()Vmn(l '2S+(C (I)], (127c)

-nm

Ymn+, 1 ),2 s+'(C1 ' ))-) ,,mn+ + i[xn,( 3) ,2 s+1(C(I)

*oIn - Xmn")(l2sl (C(II).mn6,,]}
= - Z' [r1 ,+ (n+()-y 1mn+l ),2s (1)

+ in
I in gX()2SlyI) (127d)
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and when t = even = 2s (s = 0,1,2, .. .); on the other
hand, it becomes as follows:

{I+l[V (3 , 2 s(c(I)) i - V (i),2s((I)

"Yimn.i + in[Umn( '2 s(C ( I )).-in m - Um ,2s(C(II)

Y5[,= Z[imn+lf,( n+DlO,2s(c(M)
n=m

+ ingn(O)Umn"iO2s(c(I))], (128a)
Z {in+[X i(3 ),2 (C(I)).aii

n~~~~~~~m~m~

- (Xmni (, 2 s(C(II)-1 n+] + in Iy (3 ) ,2 s(C(IO)

mni - Ymn") 
2
s (C").imn]}

[in Ynn+i(0)-Xnn iM,)2s ( )

+ ignn(O)Ymn") 2 s(C I))], (128b)

Z {in[Umn(3 ,2s(C(I) i, - se 3U ,, ). 2S(C(II ):y Y,,nn]
n=m

+ i[Vm ( 3),2s ())'01,,mn+ - s 0n+i(') (CII))
'6i,,n+i] = _Y [ifnn(0~Un"i)'2S(C M)

+ in gini(0)Vmn+i") 
2s (C M)1 (128C)

where ~~~ means th2umtinoe values as n

even-orderYmn t (c ))of a mn - Ymn ithe)(C odd-
-4n=m

+ i [Xmn+ (3),2s (C(I))-0i,,mn+i - Xmn.1 )'2 (C(I))

'61,mn+i]} = - E infnn(0Y)y 2s( )
n=m

+- inti 9m+(0'X-n (1) 2s(C(I))]1 (128d)

where 2;,n' means the summation over values as n
= mn, m + 2 m + 4, . ... In these equations, Eqs.
(127a), (127b), (128c), and (128d) are combining the
even-order terms of ael,mn and 1,mn with the odd-
order terms of f0,mn and 61,mn, whereas Eqs. (127c),
(127d), (128a), and (128b) combine the odd-ordered
al,,mn and Y1,mn with even-ordered 01imn and 51,mn-
Therefore, when the infinite system of Eqs. (86a) to
(86d) is truncated to the finite number of equations
including only the first N expansion coefficients for
al,mn, /3 ,mn, Y1,mn, and 61,mn (n = m, m + 1, . . ., m +
N - 1) for each value of m, we can use, to detrmine
the coefficients, such two systems of 2N-linear-cou-
pled equations as (127a), (127b), (128c), and (128d)
and as (127c), (127d), (128a), and (128b), instead of
solving the system of 4N-linear Eqs. (86a) to (86d).
This implies marked simplification and improvement
in calculating the unknown coefficients.

Now, it must be remembered that the parameters
Umn (3)t, Vmn (3), Xmn, (3)t and Ymn (3)t are complex
and that the magnitudes of the real and imaginary
parts of them are in great disparity, particularly for
large values of n, because they involve both Rmn(l)
and Rmn 2), where the absolute value of Rmn~') de-
creases as n increases; on the other hand, Rmn (2) in-
creases in magnitude. By definitions of the parame-
ters, furthermore, the magnitudes of real and imagi-
nary parts for Umn(I) t and Vmn(I) t behave in a differ-
ent manner, for example, when the real part of
Umn(j) t is large, the imaginary part of Vmn(j) t be-
comes large, and vice versa. A similar relation holds

for Xmn(j) t and Ymn(I) t. These behaviors make
practical computation of the unknown coefficients
unstable. In order to avoid such difficulty, the sys-
tem of equations for the combination of, for instance,
even-ordered al,mn and odd-ordered l1,inn in case 1
can be derived by taking Eqs. (127a) + (127b), Eqs.
(127a) - (127b), Eqs. (128c) + (128d), and Eqs.
(128c) - (128d) and by dividing the coefficients of
the system of equations by Rmn( 2 )(c (i); o) or by
Rmn(1)(c (ii); so), for the purpose of making the magni-
tudes of real and imaginary parts and the absolute
values of all coefficients uniform.

IX. Numerical Computation

In our theory, solutions are expressed in terms of
the spheroidal wavefunctions, which are functions
not only of the coordinates but also of the properties
of the medium. One disadvantage in using the
spheroidal functions is that numerical tables of these
functions are, at present, scanty and sporadic and in
order to find numerical values, very laborious compu-
tations are necessary. Flammer9 has published ex-
tensive tables of numerical values for the spheroidal
eigenvalues, expansion coefficients, and functions
themselves, which were compiled from earlier work-
ers and, in part, evaluated by himself. However, his
tables are not enough, particularly, for large values of
c and for the oblate spheroidal, functions. No table
exists for complex values of c, which are needed for
the case of an absorbing spheroid, in which the re-
fractive index R is complex. We shall, in this study,
adopt only the real index s = 1.33. The numerical
values of the spheroidal eigenvalues and expansion
coefficients were computed following the scheme de-
veloped by Bouwkamp,i3 which is also cited in Flam-
mer's monograph.

Numerical computations are performed on the
spheroids of the size parameters c = 1 up to 7, where
the superscript (I) on c is omitted, and with the ratio
of the semimajor axis a to the semiminor axis b of
a/b = 2, 5, and 10 for the prolate spheroids, and a/b
= 2 for the oblate ones. The eccentricity e of the el-
lipse can be expressed in terms of the ratio a/b and
its numerical values for a/b = 2, 5, and 10 are, respec-
tively, 0.866025, 0.979796, and 0.994987. The inci-
dent angles v are taken to be 00, 450, and 900.

Several checks on the validity of the results ob-
tained have been made for some quantities. As a
check on the convergence of the infinite series for the
fields expressions, which were practically truncated
to finite series including only the first N expansion
coefficients a and f0n, the scattering and extinc-
tion cross sections at parallel incidence were comput-
ed for various values of N. In Fig. 2, the cross sec-
tions, which are normalized by those with the largest
N values, for the prolate spheroids of c = 1 and c =
5, and with a/b = 2 (left half) and a/b = 10 (right
half) are shown by solid lines for the extinction and
by dashed lines for the scattering. Since the refrac-
tive index'is real, the extinction and scattering cross
sections, which are, respectively, computed from Eqs.
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lines for extinction and by d,

values of the scattering functions for 0 0° and 0 =
b)/ \ 180° are indicated in the margin. For a small spher-

/0_ \' C=I oid of c = 1, the angular pattern of i is rather flat;
on the other hand, that of i2 is approximately pro-
portional to cos20. This is similar to the behavior of
the Rayleigh limit for the scattering by very small
spheres: for the limit of c << 1, the scattering by a
spheroid becomes independent of its shape and the
angular distribution coincides with that of the so-
called Rayleigh scattering, in which i is constant

/ C=5,' and i 2 varies as cos20. With the increase of size pa-
Extinction rameter c, the magnitude of the intensity functions

--- Scattering increases and the values for 0 = 0 become much
l l l l l greater than for 0 = 1800 (i.e., the predominance of

24 28 32 36 40 the forward scattering); in addition, the patterns of
their angular distributions become more and more

ering cross sections at = 00 complicated, showing oscillating fluctuations with 0
ries to finite ones including only particularly, for the component i l.
ie termination number for the The corresponding picture for the prolate spher-
, normalized by those with the oids of a/b = 5 is given in Fig. 4. the basic behavior
;pheroids of c = 1 and 5, and of of the intensity functions with regard to the increase
(right half) are shown by solid of c, is the same as that for a/b = 2. If Fig. 3 is com-
ashed lines for scattering, pared with Fig. 4, some effects of the shape (or the

(112) and (119), should coincide. It is seen from the
figures that the series converge more rapidly for the
spheroids of a/b = 2 than for those of a/b = 10, and
the rapidity of convergence is not so much dependent
on the size parameter c, and that, as N increases, the
normalized cross sections for c = 1 converge decreas-
ingly to the finite values, while for c = 5, they tend to
converge increasingly. In fact, at least for c S 10, the
scattering and extinction cross sections for the spher-
oid of a/b = 2 agree through five or more places for N
= 20, and those for a/b = 10 coincide through three
or more places for N = 40. At oblique incidence, the
convergence of the summations over m (i.e., 0-depen-
dent series) are dependent on the size and shape of
the spheroid. It seems enough for the terminated
number M of the terms of 0-dependent series to set
up M = 3 for c S 3 and M c for 3 < c 10 (m =
0,1,2, . .. I'M ).

X. Angular Distribution of the Scattered Intensity

A. Parallel Incidence of the Linearly Polarized Light

At parallel incidence (D = 0°) of the linearly polar-
ized light, the intensity functions il and i2, defined
by Eqs. (107) and (108), are functions, for the spher-
oid of given size and shape, of the refractive index Se
and of the scattering angle 0 and correspond, respec-
tively, to the components perpendicular and parallel
to the scattering plane.

The angular distribution of the intensity functions
scattered by the prolate spheroids of a/b = 2 and Se
= 1.33 are shown in Fig. 3 for several size parameters
from c = 1 to c = 7. The components i 1 are given by
solid curves and the components i2 by dashed ones.
The ordinates in these figures are on a logarithmic
scale, while the abscissa is linear in the scattering
angle 0 measured from the forward direction. The

6.46- 10'

5.45 10

7.90 10°

4.74 - 10'

I 63. 102

3.81 102

6.48 102

1.91 10-3

.35 1 0-

.08- 1

.68 IC'

07 10'

.64 10

56 10°

O 30 60 90 120 150 180
SCATTERING ANGLE

Fig. 3. Angular distribution of the intensity functions il (solid
lines) and i2 (dashed lines) at r = 0' for the prolate spheroids of
a/b = 2 and c = 1 up to 7. The ordinate is on a logarithmic scale
(1 division = a factor 10), and the abscissa is linear in the scatter-
ing angle. The values for the forescattering and backscattering

are indicated in the margin.
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Fig. 4. Same as Fig. 3, but for the prolate spheroid of a/b = 5.

degree of prolateness) are clearly observed: as the
spheroids become slender, the angular patterns for
both il and i2 fluctuate more and more with the
scattering angle. The patterns for the spheroids of
a/b = 2 fairly resemble those for spheres (cf. Ref. 11,
p. 153). For the spheroids of a given size parameter,
the over-all magnitude of the intensity functions is
diminished, and the difference of values for 0 = 
and 0 = 180° is enlarged, as the ratio a/b increases.

As an example of scattering by oblate spheroids,
the intensity functions for a/b'= 2 are displayed in
Fig. 5. This figure shows the effects of the shape on
the angular distribution patterns. In comparison
with Fig. 3, the larger magnitudes than those for the
prolate spheroids and the broad maxima of il at the
scattering angles around 1200 can be regarded as
their characteristic features.

B. Oblique Incidence of the Linearly Polarized Light

The scattered intensity functions at the oblique in-
cidence of the linearly polarized light are given by i 11
and i 2 for case 1 and by i2 l and i2 2 for case 2,
which are, respectively, defined by Eqs. (102), (103),
(104), and (105). The numerical results for these
functions are given as functions of angles 0 and 0,
where 0 and X are, respectively, the zenith and azi-
muth angles in the spherical coordinates with its ori-
gin at the center of the spheroid. The x axis is taken
in the incident plane, then 0 = 0 in this plane. The
scattering angle 0 between the directions of the inci-

Fig. 5. Same as Fig. 3, but for the oblate spheroid of a/b = 2.

dent wave (hO) and of the scattered one (0,1) can eas-
ily be obtained from the spherical geometry as fol-
lows:

cose = cos 'cosO + sin *sinO cos4. (129)

Figure 6 shows the angular distribution of the in-
tensity functions ill (solid lines) and i 2 (dashed
lines) scattered by the prolate spheroid of c = 1 and
a/b = 2 for the incident light polarized in the TE
mode (case 1) at v = 45°. The magnitude of the scat-
tered intensity can be evaluated from the linear scale
plotted in the negative z axis. This figure illustrates,
as a function of 0 in the circular diagram, the angular
patterns in three scattering planes through the z axis:
one parallel to the incident plane (i.e., X = 00 or
180°), one inclining from it by an angle 450 (i.e., 0 =
450 or 2250), and one normal to it (i.e., 0 = 900 or
2700), which we shall call, for sake of convenience,
plane 1, plane 2 and plane 3, respectively. The per-
pendicular components i decrease going from
plane 1 to plane 2 and disappear in plane 3. On the
other hand, the parallel components i12 do not ap-
pear in plane 1 and increase going from plane 2 to
plane 3, because the TE mode wave has no compo-
nent parallel to plane 1 and no component perpen-
dicular to plane 3. On the z axis (i.e., at 0 = 00 and
1800), the values of i11 in plane 1 coincide with those
of i12 in plane 3 and the values of i1 1 and i12 in
plane 2 agree with each other, as it must be. The
cross components i12 have maxima at 0 = 00 and
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Fig. 6. Angular distribution of the intensity functions i 11 (solid
lines) and i 12 (dashed lines) for the prolate spheroid of c = 1 and
a/b = 2, and fbr r = 450. The figure shows, as a function of the ze-
nith angle in the circular diagram, the distribution patterns in
the three scattering planes through the z axis: one parallel to the
incident plane (O = 00 or 180'), one inclining from it by an angle

45' ( = 450 or 225'), and one normal to it ( = 900 or 270').

1800 and vanish at 0 = 900, and their patterns are
symmetric with respect to the rotation axis, while the
components ill show rather simple distribution pat-
terns with 0, and i in plane 1 has a maximum at 0 =
450 and = 00 (the forward direction) and a mini-
mum near 0 = 1800, showing the predominated for-
ward scattering and the asymmetric pattern with re-
spect to the incident direction.

The corresponding distributions for v = 900 are
displayed in Fig. 7. Compared with the case of A =
450, the backscattered intensities in plane 1 are en-
larged, although the forwardly scattered intensities
are hardly varied; it seems mainly due to the incre-
ment of the cross-sectional area of the spheroid nor-
mal to the incident direction [cf. Eq. (133)]. The an-
gular distributions of both i 1 and i 2 are symmetric
with respect to the incident direction.

In Figs. 8 and 9 are shown the intensity functions
i21 (0,1) and i2 2 (0, 0) for = 450 and 900, respective-
ly, which correspond to the TM mode incident wave
(case 2) for the same prolate spheroid. The compo-
nents i22 polarized in the same mode to the incident
light are given by solid lines and the cross-polarized
components i2l by dashed lines in these figures. At

= 450 and 900, the patterns for case 1 (Figs. 6 and
7) and case 2 (Figs. 8 and 9) are greatly different.
The incident wave in case 2 has components both
parallel and perpendicular to plane 3, which are pro-
portional to sing and cost, respectively, and naturally
has no component normal to plane 1. As the inci-
dent angle v increases, the cross component i2l de-
creases and disappears at ¢ = 900, while the compo-
nent i22 increases, particularly in plane 3 and in the
backward directions. For smaller angles , however,

the distribution patterns of i21 and i22 are similar,
respectively, to those of ill and i 2 , because in the
limit v - 0, i 1 in plane 1 and i21 in plane 3 degener-
ate into the intensity function i 1 for the parallel inci-
dence, and 12 in plane 3 and i22 in plane 1 into the
function i2.

Next, we shall briefly examine scattering by an ob-
late spheroid. Figure 10 illustrates the intensity
functions i 1 and i 2 for the oblate spheroid of c = 1

0 and a/b = 2 for case 1 at A = 45°. For case 2, the cor-
responding pictures are shown in Fig. 11. In these
figures, the components polarized in the same mode
as the incident wave (ill and i22) are given by solid

Prolate
a/b= 2

C = 
Tie = 1.33

0co ~

Prolate
a/b = 2
C = I
ne = .33

Fig. 7. Same as Fig. 6, but for v = 90'.

0

Fig. 8. Angular distribution of the intensity functions i2 2 (solid
lines) and i2 l (broken lines) for the prolate spheroid of c = 1, a/b

= 2, and for = 450 in the three azimuth planes.
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ward scattering, and it may be owing to the diminu-
tion of the cross-sectional area of the oblate spheroid
with respect to- the incident direction [cf. Eq. (134)].

C. Oblique Incidence of the Unpolarized Light

The Stokes parameters of the scattered light
(I, Q, U, V) in the scattering plane can be expressed in
terms of the Stokes parameters of the incident wave
(Io, Qo, Uo, V0 ) in the incident plane by means of the
linear transformation (Ref. 11, p. 43-44); let F be the
four-by-four transformation matrix, and let Fij repre-
sent the elements in the ith row and jth column.
For an unpolarized light with parameters (1,0,0,0),
the scattered intensity and the degree of linear polar-
ization are given by Fil and - F21 /F11, respectively.
To be explicit,

F11 -(il + 12 + i2 + i22), (130)

Fig. 9. Same as Fig. 8, but for v = 900.

Oblate
a/b =2

C =I
Be i 1.33

Fig. 10. Same as Fig. 6, but for the oblate spheroid of c = 1 and
a/b = 2.

lines and the cross-polarized components i1 2 and i21
by dashed ones. In comparison with scattering by
prolate spheroids, although the general patterns of
the angular distribution of the intensity functions are
similar to those for the prolate ones, some character-
istic features can be seen from these figures. First,
due to the fact that the volume of the oblate spheroid
is larger than that of the prolate one with same
values of c and a/b, the values of intensity functions
for the oblate spheroid are larger than those for the
prolate one. For the oblate spheroid, as v increases,
all components decrease with one exception of ill in
plane 1 in the forward direction ( = ); this feature is
prominent, in particular, for case 2 and for the back-

p _F 21 - (ii + i2l) - U12 + 22) (131)
F11 (iii + i2 ) + (i12 + i22)

where 1/2(i 11 + i1 2 + i21 + i2 2 ) will be called the in-
tensity functions for the unpolarized light at oblique
incidence.

Figure 12 shows the angular distribution of the
functions 1/2(iii + i 12 + i 21 + i 2 2 ) for the prolate
spheroid of c = 1 and a/b = 2 at v = 45°. The solid
lines indicate the distribution in plane 1 ( = 00 or
1809), the short broken ones in plane 2 ( = 450 or
2250), and the long broken ones in plane 3 (= 900 or
2700). These curves can be, of course, drawn from
Figs. 6 and 8. The patterns in the three azimuth
planes are different, showing the effects of the shape;
for such particles as spheres and spheroids at ¢ = 0,
which are symmetric with respect to the unpolarized
incident light, the scattered intensity is azimuthally
symmetric. In plane 1, the scattered intensity takes
a maximum in the forward directions ( = 450) and

Oblate 9
a/b=2 

80~~~

450
TM mode
22 8 21 1

06

Fig. 11. Same as Fig. 8, but for the oblate spheroid of c = 1 and
a/b = 2.
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but for the oblate spheroid of c = and
a/b = 2.

diminishes near the directions normal to the incident
direction, while, in plane 3, the angular pattern shows
a slight decrease of the intensity with increasing 0.

For the oblate spheroid of c 1 and a/b = 2, the
corresponding figure is given in Fig. 13. It is charac-
teristic that the intensity in plane 3 becomes mini-
mum in the direction 0 = 900, and it is due to no con-
tribution Of i 12 to the direction as shown in Fig. 10.

For larger spheroids, the distribution patterns be-
come much complicated with great fluctuations with

0 and 1k. Figure 14 illustrates the logarithmic values
of the intensity functions 1/2(ill i1 2 + i21 + i2 2 )
for the prolate spheroid of c = 5 and a/b = 2 at ~ =
450, as a function of the zenith angle 0 measured
from the positive z axis. The solid, short broken,
and long broken lines give, respectively, the values in
plane 1, plane 2, and plane 3. The angular distribu-
tion in plane shows the asymmetric pattern with re-
spect to the incident direction and the strong forward
scattering peak in absence of a peak in the backward
direction. The latter peak is a characteristic of
transparent particles with symmetric form to the in-
cident direction. In plane 3, the scattered intensity
takes a maximum at 0 = 00 and minima in the direc-
tions 0 1600, and is symmetric with respect td the z
axis (the axis of revolution).

The corresponding figure for =900 is given in
Fig. 15. The distribution patterns are naturally sym-
metric with respect to the incident direction.

loI 

Prolate
'/b= 2

(It 1. 3 3 

,90
+ 

10~~~~~~~~~~~~~~~8

Id~~~~I

180 120 60 0 60 120 180
(degrees)

Fig. 14. Angular distribution of the intensity function 1/2 (i1 ±
i12 + i21 + i22) for the prolate spheroid of c = 5 and a/b =2,

and ~ = 45'. The solid, short broken, and long broken lines give
logarithmic values in plane 1, plane 2, and plane 3, respectively, as

a function of 0.
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Fig. 15. Same as Fig. 14 but for ~ = 90'.
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Fig. 16. Same as Fig. 14, but for the oblate spheroid of c = 5 and
a/b = 2.
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Q.ca = C.c.JG(;), (132)

where G (v) is the cross-sectional area of the spheroid
at the incident angle r and is given by

G(t) = (a2.cos2 + b2.sin 2t)/2

for the prolate spheroid and

(133)

7Ta
2 b

c(t) = (b2.cos2t + a2 si2)i/2 (134)

for the oblate one,'4 which become, respectively, 7rb2
and 7ra2 for v = 00, and both of which are 7rab for v =
900; the sectional area of the prolate spheroid in-
creases monotonously with increasing incident angle
, while that of the oblate spheroid decreases.

Figure 18 shows the scattering efficiency factors
Qsca at the parallel incidence (D = 0°) as a function of
the size parameter c. The efficiency factors for the
prolate spheroids of a/b = 2, 5, and 10 are given by
solid lines and those for the oblate spheroids of a/b =
2 by a long broken line. As a reference, the efficiency
factors for homogeneous spheres computed by using
the Mie theory are also drawn by a short broken line,
and, for this curve, the values of the abscissa should

15, but for the oblate spheroid of c = 5 and
alb = 2.

Figures 16 and 17 show the distributions for the
oblate spheroid of c = 5 and a/b = 2 at oblique inci-
dences of ¢ = 450 and 900, respectively. For ¢ = 450,
the intensity functions in plane 1, fluctuate greatly,
showing a broad second maximum around 0 = 130 in

k = 00 and deep minima near 0 = 250 and 145° in +
= 1800. The intensities in plane 3 have maxima at 0
= 450 rather than at 0 = 00 and 1800 in the case of
the small oblate spheroid (Fig. 13). For this large
oblate spheroid, contribution to the backward scat-
tering increases at the large incident angle r = 900
because of the symmetrical orientation to the inci-
dent light, although the cross-sectional area de-
creases.

Xl. Scattering Cross Sections and Efficiency Factors

The scattering efficiency factor Qsca is here defined
by the ratio of the scattering cross section Csca to the
area of the geometrical cross section of the spheroid,
normal to the incident direction, at the center.
Thus,

3 4 5
C = 2 ff/A

Fig. 18. Scattering efficiency factors Qsca at r = 0' as a function
of the size parameter c for the prolate spheroids of a/b = 2, 5, and
10 (solid lines) and for the oblate spheroid of a/b = 2 (long broken
lines). The curve for the sphere is also shown by a short broken

line.
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be read as values of the size parameter of the Mie
theory. In this size range, the efficiency factors of
the prolate spheroids increase as c increases, and at a
given size, they are smaller for larger a/b. The pat-
tern for the prolate spheroids of a/b = 2 is very simi-
lar to that for spheres showing an initial maximum in
the so-called resonance region, i.e., Qsca = 6.5 at c -
6. Greenberg et al.15 have obtained the numerical
results on the efficiency factors of the prolate spher-
oids up to elongations of two, for the scalar wave pro-
pagated along the axis of the spheroid (i.e., v = 00) by
the point-matching technique, which is a method ap-
proximating the boundary conditions at finite num-
ber of points on the boundary. A noteworthy aspect
of their results is the increasing height of the first
broad maximum in the efficiency curves with increas-
ing elongation of the spheroid as well as a deeper dip
in the first minimum. This effect is also observed in
our results. In addition, it is interesting that the
scattering efficiency computed by them for the
spheroid of a/b = 2 and c = 1.3 has the maximum
value of about 6 at the phase shift 2kbI c-11 = 2 or,
with our size parameter, at c = 5.8, showing a good
agreement with our results by the rigorous solution.

For the oblique incidence of v = 450 and 900, the
scattering efficiency factors of the prolate spheroid
with a/b = 2 are given in Fig. 19 by solid lines for
case 1 (TE mode) and by long broken lines for case 2
(TM mode). The curve for v = 0°, which is already
drawn in Fig. 18, is given by short broken lines. The
saftterinP Crrs section C. con for case 1 and (>..... for
case 2 at oblique incidence were co:
(116) and (118), respectively. As -
and Q2,sca tend to Qsca for the par

10'

10°1

101

10210C2
2 4

C = 2 71/..

Fig. 19. Scattering efficiency factors Q 1,sc ((

(long broken lines) as a function of c for the

n/b = 2 and for ¢ = 45' and 90'. Curve for ¢

shown by a short broken lini

SCATTERING ANGLE

Fig. 20. Angular distribution of the intensity function 1/2(il +
i 2 ) for the prolate spheroid of c = 5 and a/b = 2 (dashed line) and

for the spheres of the size parameter x = 4.0, 3.6, and 3.4 (solid
lines).

mputed by Eq. For the small spheroids of c 7, the efficiency fac-
- 0, both Q i,sca tors are smaller for larger incident angle , and for a
'allel incidence. given angle , Q2,sca is larger than Qisca; the differ-

ences of Q2,sca and Q,sca increase as increases.
This result is supported by the experimental re-
sults1 5 ,1 6 on the extinction cross section of the micro-
wave for an arbitrarily oriented prolate spheroid with

-~ ~ 45 27rb/X = 2.5, C = 1.25, and a/b = 2. For an unpolar-
90' ized incident light, the scattering efficiency factors

are given by 1/2(Q 1,sca + Q2,sca)

Finally, an example of comparison of the scattering
by a spheroid with that by a sphere is displayed. In
Fig. 20, the angular distributions of the intensity
function 1/2(il + i2) for unpolarized incident light
are shown for the prolate spheroid of c = 5, a/b = 2
at r = 00 by dashed curves and for spheres with size
parameters x = 4.0, 3.6, and 3.4 by solid curves. The
values of x - 3.6 and 4.0 are chosen so that the

(;)i.sca spheres have the same volume as that of the spheroid
)2. SC and the cross-sectional area is equal to the area of the

ellipse rab; the size parameter of the sphere giving
sca the area equal to the sectional area 7rb2 of the spher-

oid is x = 2.9. The angular patterns of the spheroid
in the forward region are very similar to those for

6 8 3 spheres, but they are different at scattering angles
greater than 60°. The intensities scattered by the
spheroid are nearest to those of the largest sphere (x

)id lines) and Q2sca = 4.0) in the forward region and to those of the
prolate spheroid of smallest one (x = 3.4) in the backward region. The
= 00, or Q,,, is also value of (47r/X2)C sa of this spheroid is nearly equal to

that of the sphere with x = 4.0; the total radiation
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scattered by the spheroid is, in this case, of same
magnitude as that by the sphere having the equiva-
lent area to rab, rather than the volume equal to that
of the spheroid.

This work was supported partly by the Ministry of
Education of Japan under Fund for Scientific Re-
search C 754057 and partly by the U.S. National En-
vironmental Satellite Service under Contract 2-
37151.
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OSA Instructions for Post-Deadline Papers

The Executive Committee of the Board of Directors, at Its meet-
ing on 9 December 1970, instituted a new policy toward presenta-
tion of post-deadline papers at the semiannual meetings of the
Society. In order to give participants at the meetings an
opportunity to hear new and significant material In rapidly
advancing areas of optics, authors will be provided with the
opportunity to present results that have been obtained after
the normal deadline for contributed papers. The regulations
that govern the submission of post-deadline papers follow:

(1) In order to be considered for the post-deadline session(s)
an author must submit a 1000-word summary in addition to the
information required on the standard abstract form. The 1000-
word abstract will be used in selecting papers to be accepted.
The 200-word abstracts of accepted papers will be published in
the Journal of the Optical Society of America.

(2) Post-deadline papers are to be submitted to the Executive
Director, Optical Society of America, 2100 Pennsylvania Avenue,
N.W., Washington, D.C. 20037. Only those received by the
Thursday preceding an OSA meeting can be duplicated and
distributed in time for the program committee meeting.

(3) The program committee for the selection of post-deadline
papers consists of the Technical Council, the Executive Director,
and any others designated by the chairman of the Technical
Council. -This group will meet before the first full day of the
OSA meeting. The chairman of the Technical Council, or
someone designated by him, will preside.

-(4) Only post-deadline papers judged by the appropriate mem-
bers of the program committee to be truly excellent and com-
pelling in their timeliness will be accepted.

(5) The accepted post-deadline papers will be placed at the
end of related sessions of contributed papers, if possible, or in
a separate session if necessary. The number of papers ac-
cepted will be governed by the time available as well as by the
requirements of Regulation (4).

(6) Multiple papers by the same author will be handled in a
manner consistent with OSA policy. Accepted post-deadline
papers will have priority over multiple papers by the same
author that are scheduled in the same session.

(7) After post-deadline papers have been selected, a schedule
will be printed and made available to the attendees early in the
meeting. Copies of the 200-word abstracts will also be avail-
able.

(8) The 200-word abstracts will be printed in the Journal in due
course. They will not appear with the regular program but at
a later date as the printing schedule permits.

(9) The selection and scheduling of post-deadline papers will
be done with the interests of the attendees given principal
consideration.
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