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The present paper 1s an introJc;_ction to and a swnma.ry of a thesis 

consisting of the following papers: 

I. T matrix f or eJectromagnctic scattering from · an arbi trQry rn:uaber 

of scatterers and representations of E(3). (together with S. Strom) 

Phys. Rev. DQ., 3661 (1973). 

II. T rnatrix formulation of clectromagrnctj c scattering from multilaycr,:d. 

scatterers. ( toc;ctll cr witb S. Strfrn) Phys. Hev. DlQ_, ~26'(0 \ 1974) . 

III. Matrix forwulation of acoustic scattering fr-::m an arbitr·ary mun1JC>r of 

scatt~rcrs.(together with S. Strom) J". Acoust. Soc. Am. 56,"(71 (1974). 

IV. Ma.tri:-: formulation of o.c:C'>ustic se:s.tteY':ing from Iiiultile.::e1·ed scatterers . 

(together with S. Strom) <T. h.c:ov.st. Soc. J1Jn. 2._7_, 2 (·19·r5). 

\'. t.:n.trix formt<l.a+-ion of sto.tic f:i.eld l'rcL;c,!:s ii.··:c:ving <:n arbitrary 

mrrnher of bor<jes. (preprint 75-12. Institute- ·:if T:rieo:cetical Physics, 

G0teboq~.) 
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1. 

The notion of the scattering matrix has been used for many years in 

nuclear and particle physics [ 1] , [2] In the description of a 

collision experiment this matrix gives the connection between two asymp-~ 

totic states which describe t.he incoming wave field and the outgoing 

wave field res_pectiveJ.y. The theory has been developed along two diff-

erent lines. According to 1Jne line of approach one rias been trying 

to construct the scattering matrix starting from fundamental physical 

axioms, supplemented by analytici t~,r assumptions conc.erning aripropriate 

measu:!.'a,ble variables. In this Zorm of the theo:-y the dynamical equa-

tions of the procet,~; are inlierent in t:he scattering matrix. In the 

other 8.?proach one starts from the dyni:ill1ical eq_uations from which the 

scattering matrix can be computed. In particle physics one has been 

forced to use both met;hods because one does not have a complete know--

ledge of the dynamical equaticns apriori. In other branches of 

physics, for example electror:1agnetic tl1eor~r, the dynamical equations 

have · been known since l~ng g,nd therefore the scatterine; ii:a.tri x for 

any given collision experiment can in principle l;2 crilculatecL Since 

the scattering matrix contains all the physics of a p:coce;:;s, its con-

struction is not an easy tast even when the dynamical eqt:..:.'.tions are 

known. Integral equaLions arc well suited for con.stru::-tioP of the 

scattering matrix. Usini:s this method 011e usually obta,ins recursion 

relations for the ~·~cnttering matrix i!1 gr.::ieral operator form. Howe\1 ..:r, 

P.C. Waterman succeeded in constructing the scac~ering matrix for 

elec t.r·oH1&.gnetie: scad. c:::.:ii~g fr01r1 a. homogeneous body, 1n a spherical 

wave bas i o. This matr:i x is somewhat di i'ferent from the one used in 

particle physics because it gives the scattel.·ecl field at s. finite 

distance from the scatterer. For monocrornatic waves r .. ie scatte:d.ng 

matrix in Waterman's formalism gives a relation r·etween the inco:ning 

and outgoing wave [ 3 J . . ->i 
The 1nco::nir1g wc;,ve <Ji is expanded in r0guJ.ar 

-+ 
functions !~e ~J Jri with constant co.:,,ficiento.: a as 

I" 

-~j ~ -) 
~ = L ~ Re~ . 

111 Jn m. 
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2. 

'l'he scattered wave ~s is expanded in irre[~ular functions i , which 
rn 

behave like an outgo:i ~:g s-pherical .~~ave for large distances, with constant 

•• • ->-s [ coeff1c1cnts f as ~ = 
m 

·T 
.f' ~I 
.L m m. The radius of convergence depends 

m 
on the geometry of the configuration. 'I'he scc;.ttering matrix T is defined 

by f - \ 111 a In the construction of the T matrix one uses the - m-'-- .... mm' m'' 
rn' 

~ompleteness of the basis functions (or gradient or curl of tbP. basis 

functions according to the character of the problem) for representation 

of the surface · field. The completeness of different sets of basis fnnc--

tions is discussed in Refs. [4J and [5] It has rot yc;;t been clarifi2c~ 

to what e;.: t.fmt the E:xpansions can be used in the cP.se of surf5.ces with 

more or less severe irregularities such as ecl.ges, corners etc. 'I'he 

-1 
T matrix is obtained as T = - Q(Re,Re)Q(Out,Hc) vhere the Q's are 

surface integral. matrices with specific combinations of regular amt 

irregular basis functions. The precis~ criteria for the exis~ence of 

the inverse of Q(Out,Re) have r:!Ot bec:'.l stated. so far. ·1'he method give~> 

:;:ema:d~&bJ.;v good agreemefit 1-:lwn con:;";arod with other method::; :f'0r far ficlC~ 

computations as noticed in Ref. [ 6 J in various cases and by the present 

author in a ca,;e with lossy a.iele.ctric el1 ipso ids. One merit of the 

method is also tho.t c1n~' can tre0.t scalar and vector fie~ .. ds also in the 

static limit by usir1G the same formulas. Yurthermore the scattei·ing 

matrix for e.n asse~1bly of bodie::; can be expJ:ef.sed in terws of t~e 

scatterinf' matrice~; of the individual bodies and 'vhe translG.tion matr .ices 

for the ta.sis functions. It L tbe extension to the multiple scatterin[~ 

probl C'ill w}lich <:onsti t.nt.ps t.}lJ" ,,..~.l.j n theme of the prPSP!1t thesis. 

Ou:!.· startirtg point is +~1e singlt.~ scatterer T n:atrix formalism given t:v 

P. C. \•Iater;;:r1n. Jn Ref's. [ 3 J ancl [ 7 J Waterman uses the complt: ceness of 

the basis functio;is to expand both the ~,u.rface fields c:~1d the integr2il 

kernel in Poinc:1re-fi:Jygen' s principle. For the hmnogeneous bodies 

treated in Hefs. [ 3 J a,nd [7 J the problem is transfor:>.ed to that of 
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3. 

solving a system of infinite di::u~.:n:::;ional eql<.ations with tlie expansion 

coefficients of the ii0 coraing field <:•.s known quB.n ti ties and the coefficients 

of the scattc:red field and surface fj elds as unlrnow11s. 'l'hus) by elimimd.ing 

the coefficients of the surface fields the T matrix is obtained as a rcla-

tion between the coefficients of tbe incol~!ing and scattered field,, and it 

gives .the eoefficients of tbe scattered field d.u.e to any incoming field. 

In the papers I, II and V we show that this procedure is also applicable 

to the cc:.se of an arlii trary number of homogeneous boG.iec;, ir~cJ.udin~ the 

static case. The only adrli tional requirement is tl·iat the bodier. have 

to be separated in a specific not very strone; sen:">E~. 'l'he procedure is 

a direct ext.en~". ion of that of Wa.ter;,:s.n. lr; our extended version one u0cs 

seps.rate expansions of the surt<.ice fields on eo.:!h bociy in terms of 

bcrsis functions related to coordinate systems inside the different 

b::.idies. By u s ing the translatiOLl properties of tbe basis functions 

to relate the different li.ir;c; s e;f' fucci:i0ns :..o e.:riprc·prin.te origins or,c 

obtains the totdl T ~~~Lrix expressefi in terms of the T ~atrires of the 

ir.dividual bodies. The properties and explicit realization rf th<: 

trc,nslation cper&.tors fer cliffe:cent basis .r:\;.rr~tion::; are &)vcn in the 

appendices of I, II and V. One Gets e. 2yst.~~rn of infi11ite dimensional 

equations of which Waterrnon' s is che simi.>..Lc=st one (for only one body). 

'I':1e various c·xpa,nsior, coefficients c1:1n be tre&.ted as vectors 

-+ ~ 

( {a } = a,{ f } = f and so on) in an infinj te dimensional space 
111 \'11 

on which the different translation 1::10.trices and ob.~ect .related :matrices 

(i.e. t~e Q matrice s) ar2 

of' equatiom; 
- . _, 
iriv-ol v ing a. ~ 

T ... ... .f.i...; C".' 
..i....,.J. vJ!..LU 

->- ~i -+i . 
f and 0<, where the 0< :s are the expansion 

cocffid ent.s of the surface field on body .".e:r,ber i. The number of 

cq_~1at..:.ons exceeds the :nunoer of licdics :i'nvoJ.ved by one and the coefficient s 

ir.L the equc.t..ions are nonconn:1utir:g. By j.nspection it can be f'olJ.r..d tr~s.iJ 

the Q matricP!s um l,e rearranged ·;:,o give tlie •r matrices of the v<::.r:i.;:-.n ·:; 

boc1ies. 'I'he f,olution of the system of equations can iic uritten ·ln 

different ~:o..1·s. 
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In paper I a procedure is g:i.ven in which the T matrice<~ of the 

different bodies e.re treated j n a sym.;c.c,.;ric way. 'l'hc bodies treated 

l so far ;:ere assumed to i"Je bc.1l:iCg'2r;eo11s. A -oody which consists of 

several layer s , each of which has constaut electric and magnetic prop-· 

l ertien and which consecutively enclose Each other, is called multilayere;.l. . 

l 
'l'hc T matrix for several multilayered bodies can also l>e calcu.1 ated by 

means of the above-:rientioned. n;ethod, the only difference being that the 

1 individual 'l' matdces are mon: complicated. I:-1 papers III, IV and V the 

•r matrix for a TI!Ul tile.yerecl uody is calcnle.ted by :oissurning expar.lsions 

1 for the surface fields on t lw surfaces surroundirg +.he homogeneous regi ons 

1 
and b~r applying Poincare-Huyc;en 1 s principJ_e in the d:i.fi'erent regions. 

The result can be obtained uy a r ecursion relation starting with the 

l '11 matrix for .tbe innermost homoe:eneous recion a.rid the various Q rr,u..trice~; . 

for the second innerll'.0st surface and then calculating the T matrix for 

1 the innenno ·:-t b:o-1c.;yered o;·,ject. 'Ihen or>: conti!'lues with the '11 matrix 

1 
for the L wo--layered object il.nd tl1e Q ff'. i:~ t l" :i. h.: s of' tLe rte:x.t S«trf'ace 8.l;d 

The results be ' - d :-:i.1ch thg,t system so on. can gcnere. . ...1..1 ze· .. ll1 c,. -;.;:1y any 

.... 
I of multilayerecl objects can be im.men·.cu ~~il nedi:lS cnclo~:ed by S"L«r:''aces 

(of course with the same rcstr :i.ct ions as ·~':'·fm'''-) uhj c~1 .:n turn can be--
ta.ken toi:;ether 'Ni th other systeJ:J::: and iirm:::.'secl. to[~2ther and so on. f!. 

• bocly consisting of several ncri-enclos·i;·;g regio:ic; l'ciX.i b·2 -i;.::-eated tlS a 

multiple system of bodies. This intrcdnccs, hoc,'eYt:.r, 1r1athe:r..o.tical 

• diff:i culties in treating the eG.!Ses ~ C'Orne!"'s and p0i.nts 1-:hich ar:i.se in 

• 

• 

• 

• 

I 
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Abstract 

In the present article we give a T matrix description for static 

field problems which is analogous to the T matrix descri.ption of 

stationary scattering. We treat an arbitrary number of bodies 

which ei tt,er are cha1·acterized by homogeneous boundary conditions 

of Dirichlet' s or Neuman 1 s type or which consist of consecutively 

enclosing homogeneo'.ls layers with different properties. Problems 

with :prescribed static fields or field derivatives on some of the 

surfaces are also treated. 
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I. Iritroducti on 

In Hefs.[1] and [2] Waterma:J. has given a T matrix description of 

acoustic and electromagnetic scattering from a single hc:aogeneous 

scatterer. This formulation has been extended to an arbitrary 

number of multilayered scatterers for both acoustic ana electro­

mac;netic scattering Refs. [3], [4], [5] a11d[6J. 

In the present article we show that the T matrix formulation is 

also well suited for static field problems. Thus the static field 

pro'olem for a...-1 arbitrary number of bod.ies consisting of: severe.l 

homogeneous leyers consecutively enclose each otlle:::·, is solved for 

an arbitrary source. Furthermore, by combining the results in a 

suitable way we obtai1i the T matrix for one boay '.1hich contains 

several enclosures, whi e:h may themsel ye~~ be multi la:vered in the 

above sense. The surfaces of the bodies e,s well e.s the gcOJi.l.etrical 

configuration of the bodies have to ,:;atjsfy ce:rtain fair}y weak 

geornetri cai conditions. In the case of one mul tila;yered body a 

recursion formula :<>or the 'l' mat:;:·ix itself :is o1nained. In the 

static problc?:t the T rr1at1·ix refers to expansion in spherical solu.-

tions to Laplace' s equation. The Lranslation rr,atrices 1-rb:i clt de­

scribe a ch:=.uige of origin i;:i. these H olution~: pl.2.y a central role in 

the pr6olcm i·;i th several bodies. We revJ_ew the properties ,)f these 

tra..ri.s1utio:::i r;,:i.trices m1d show their relu.tion t o a singular limit 

of a unitary a'.ld a local representa.t1 on of the hrn-ancl-t.hree-di::.-:ien­

sional Euclidr:' u.n groups ( i.e. , the gro11ps of rotati '.JDS '.::."ld translations 

i:1 two a.:1:1 thre e-climcnsicnal spa:...;~). [ 3] , [ 5] . 

'f.'l1e plan of th <:: pi-·e::_,ent a!·ticle is r.;. s follOl·I!:. In section II we gi ·:e 

the b&sic defirii tions a."ld obt&in t11e 'r rnatrix f o r one rr.ultj ~.aye red 
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object, and in section III we extend the treatment to the case of 

an arbitrary number of mul.tilayered objects. In section IV a field 

problem with prescribed fields on an arbitrary number ·of surfaces 

and a 8ource is solved. TlLe extension of the results in sections II 

and III to some geometrically complicated bodies are also discussed 

here. In section V we give some numerical applications. The formulr;:,e 

for basis functions, trcmslation matrices as well as some general 

properties of the translation operators are referred to an appendix • 
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II. The ~'--rr::J.trix for o. raaltilayered body 

We shall consider a scalar field S8.ti s fying 

\72.y;-=D <2.1) 

The sources determine the primary field. When bodies on which 

different types of boundary conditions are prescribed are ta~en 

into a,ccoun t they give rise to a disturbance which we call the 

secondary field. The determination of the secondary field will 

be made by means of a transition matrix formalism which is patterned 

on the T matrix description of ste.tionary scattering [I] - [ 6] . In 

this formalism the trans i tion matrix T gives the secondary field in 

terms of the primary field. The disturbance is caused by the bodies 

only, i.e. any r E: actic'n back to tbe sources of the primary field is 

neglected. 

All the bodies considere d in this section are pass1 ve in the sense 

th at the Dirichle t's 01· Ncuman's bocncary conditions are homogeneous 

or we have a per!e tr2.ting fie~, d condition. In section IV we treat 

the c&se with act i -vc bodi e s by which we rnean a boJ.y on the surface 

of which the field or its normal derivative t.d:c :;::re.s cribe d nonzero 

values. for example, by this de finition we call a grounde d m:=tall:i. c 

body pass i ve wh i le a chaq=:;ed metallic body in elect1·02tatics is 

called active. Tlle T r:mtrix will n~ fe r to spherica l fiPl d solutions 

of (2.1) in the tl: ree-din r·~·n sion al c:;,se and cylindri cal fi e ld solutiom; 

in the t1·10-diJTl'_;nsional case ( cf. Rc::fs. [ 1 J , [ 5 J and [ t] ) . 'I'he two­

and tilYE: e -dimen o.i.on a l case s have identical str.1cturP RJlil they wi 11 

be d:::>veloped ~;:imultaneous ly [1], [5], [6], We sh1'1ll now considel' 

a l1ody co:u;isting of several consecut ive ly d 1closing layers as in 

F:~c; . 1.· The co :i ." &incte origin j s chosE:n irrn ide the bcdy 8nd the 

pn 1;;::.;,ry f10. J.d i ; ass u:meCt to have no S(\c!rces i.e. in particular no 
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singularities ins ide the body i.e. it is represented by an expansion 

in terms of regular fields wl1cre as the seco!ldary field is represented 

by an exp211s1on in terms of irregular fields. This is in contradis-

tinction to the corresponding scatteri~g problem where the scattered 

field i s a linear combination of both regular and irregular solutio!1s 

constituting an outgoing spherical wav e at large distance from the 

scatterer. In fact the static field problem can be obtained as a 

long wavelengt.!:1 limit of the statj onary scattering problem and in 

this limit only the irregular solutj_ons sur:'c vi ve. Of course, this 

can also be s e en from the fact that in the static problem only the 

-+ 
irregular function s are bounded for large distance. ljJ(r) is the 

I 

total field which is the sw:i of a primP..ry field y.'P and a seLond-

ary field 'f's· 
/I~ s + 'f (r)+ ~ {r) (2.2) 

We shc:.11 u::(~ the follo' . .ring surf3.ceinte§;:Cal representation of the 

field ~) 

~J t cind '\/ tf f a r e the limits from the outside of the total 
J _,,_ l 

fiP.ld ~) and its gr adient and 9(Jr:-?}J i c> the free space Green 1 s 

. , . . d. t n 2 Cl ( I r+ i!', n-fw1 ctJ. on . The G:i·een s functi ons norma lized accor ing o v d -, ,
1 

-

,., ( -)> -> ') /1 ,-r;> -?>,r\ / //" . I .~ ::--'>11\ 
-

0 'd t-V nre -(l-11 .r-J "/)/21t and '!/(7tl/r·-r J) 

in the t1;0- and three-dimen s ional cases respectively. The exp&1sion 

of the Green r s f1111ction in a complete s e t of' solutions of Lapla.ce 's 

e yuation is writ cl'.'D 

(2. 4) 
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In the three-dimensional case )\(n)::: 2.:+1 where n on the right 

hc:>.nd side cm:·respor.cl to tnt· rrai1: :=nc1e1: of -Lb< lee;enci.rc: rol;rr::om. 

In the two-dimensional case 

.Al n) 

1 
2. 11 
1 
2 

h=D 

are the irregular anc1 Re. ty 11 

(2.1) (see appendix). We shall consider a 

the regular solutions of 

. \Up 
source field I given by 

(2.5) 
p 

expB.llSlOll is valid out to the sources Of r • ) and a secondary 

field given by 

r s = I_ f n Ir lf' f1 
n 

This eL-.rpW1i.>:i. on is valid for }''> r 
mc.K 

(Fig. 1). By defining new coordi!!.ate 

(2 .6) 

vrhere rm a r:: ma)( r G S1 
O .,..~ gJ.'•" 0. ~ .L . .••• , . l accordiug to the 

tFo generic cases depicted in Fig. 2 a.ricl 3 it is possible to get 

e::q)ansior.s of the seconda,ry field valid around r.nJ' pre s cribed point 

outside s
1 

(cf. Ref.'. ['r] ) . Fig. · 2 corre<:.pcmds to an expansion 

iri irregulo.r ftmctio::-1 s a.YJ.alogus to (2.6), in e. new coordinate system . 
t 

0. , valid for the ne1·,' radius J .. ,. > }.. ... . 
J. ,, fo~x: 

Fig 3, howe»·er, corresponds 

to an ex1i2ision in r.:: p .c.Lar funct ions, in a new coordil1ate system 0. , 
l 

i i 
and is ·valio for t. < I" '-'he re I" 

f. fi1 u.. K I'll ctX no•·r is the short"'st dist-· 

a.nee from Oi to S 
1

. Of cour~~e the new expan s ions are calculated 

from (2.6) "ti;r using the translation matrices for tlie basis functions 

( cf. /\.ppendi x). The t1~ansitiornr:.atrix '11 with elemeu-L;:::: T ... h / 
1. 

satfr.fie" 

f n =:: 1- Th 11 ' o. r1 · 
(2.7) 

11' 
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An eX];ilici t expl'es;:non fol' 'r for the case of consecutively enclosing 

homogeneous layers is obtained as follows . -+ 
By considering r inside 

an in S1 inc:>cribed sphere with cc:nter in origin we get, using (2.3), 

(2.5) and after expand.ing the Green's function as in (2.4) and then 

~ 
comparing coefficients of Re. v1n ( r). 

Q,, = -· ,\u11J~s'·[ ~J+(v'j vT"" r11 tr') s 
•j r I .... \lf ?>1} 

- \! o/+ ( >·')J~- ~ l.Jln l V' J 
... 

Equation (2. 9) is obtained by considering f" 

(2. 8) 

outside the circurr.sc:ribed 

sphere of s1 with C•?l1ter in origin using (2.3), (2.6) and after ex­

pa.nding the Green's fu..Ylction as in (2.4) 2.l1.d then comparing coefficients 
..,. 

of Ir- ~J1.1 {r) . 

f11 ·~ ~Ui) f ol.t·t Y,~1- (?'J \/ 'l{e lf ~ lr') -
s'l 

- [v' y1+ tr')] 1~ e. LY~ tv')} (2.9) 

Boundar.r conditions 0f interest are 

l. ) Di· ··t· 1 c1·• 1 e+ ' " .~ "'1 :1J· i· i O'!l 1 IJ ·~, Q on ~- . .. __ ,. v "' ... "J. ,._ v - ... . ,.,. .. .J. .. ...... . : 
I\ 

ii) Neumann's condition h •V 1.y
1
_-:.:Q on 

iii) Penctro.ting fieln condition 0 0 l/.I, ~ 0 lll 1 
L l ·1~ L 1 I - ) 

on ( 
.,) 1 . 

o/ ~ lS the lir.ri. t from the inside of the field r f betveen S J and S
2 

. 

As is well known the:s<; three boundary ~~onditions have applications in 

such e.n:a.3 a::; cl0ctrostatics, magnetci:istatics , heatconduction and static 

fJ.ow pro:_'l!::;ms. We •.-:snt to nse a suitable c0H:plete system of functions 

for the E Xi1m1siorJ o f the bou.ndai·;1 values of the field and its normal 

dcri ve.t i. ve on S 
1

. The proble:m is then reduced to a system of equatic,;1s 

for ar, , f'
11 

end tlle exp1:m sion coefficients fo!' the surface field [.1] . 

- .., 
a re Lr 1]· fur th0 tbrec-di1r.ensional cast: and ir: Ref. i S j t'- . 
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Laplace's eq_uation can 1Y2 foun '.:l. in a11 arialoe;ou::; wa~'· 

When makine; an expansion of the surfe.ce fields it is nece~;sary 

to req_ui re that the rad~. us r(f3,9) to points on the surfac~ is con-

tinous and singlevalued. 

By expanding the field on the bo:il'lc1ary according to case 

i) 
I\ 

L. 1 I\ !') 

n·v'f+ 
........... 

Or '1 n·t1 1,e UI -
n 111 

ii) 2- 1 
J'< e ~c,,· /1 1'+ - cY n ,., 

iii) 
1 l_ L 0>··: f~e Lf1n -t Jj 1 T l lf _ -- 11 ~ V lf'nJ 

H 

and de f~ ning 

i) 

ii) 

iii) 

(2.10) 

'l'he first aTgument 

1-;ith the lover left index is irrei:;t<1ar er regu]<G· and sim:'..12.rly fur 

DI 
Q ( r,,. ,1~p ). =---: -

n n ' ... ' -~ 

>-f ri) 
A (11 ~ 

_...,I 
f1' i { lr l~e) .. 
U( /.'I " I .... I 

•U 

/".) . /;/ 1 ).I ~ { J•tl 
' l (" '. • ( ·~· • ~ ) •' - l i ' ... i 

-- 1~ i • £.(,! , . - -------
J~ ---- ".\ L l' n ~ , 1 

,··, 1" ' I I \_./ > { ,_,,'I ';'"() t11 lfl-tJ ~ r• 
( ... 

For a hc::Jogeneour; ~-'Octy char<.:.c:teri z.ed 1.:y penetr <•.t.i.ng fi P. ld 001l..'1ci.'..ir;r 

condition ·1. e. . . . h n.ave -::o vani::.' 
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i1 

i1 

f1 
~ 
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rJ 
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t 
bodies (case i, ii, or iii with f'3n::; Q ) the T matrix is obtained 

1 
by means of an elimination of the C<'»: S. From (2.8) and (2.9) one 

gets, using a vector and mati·ix notation {l::. [ O-., l etc. the equations 

(2. 11) 

(2.12) 

and thus by definition 

(2.13) 

For the 1rcre g2neral case of a nonhornogeneous body with another 

. . . n11:0 surface s
2 

inside S 
1 

we have to require fJl
1 

f . The layer between 

S 
1 

and s
2 

does not contain tbe origin and therefore an expansion of 

the field in this region contains also irr. parts conseq_u~ntly we 

must . In st.<:::ed of (2. 11) and (2.12) we get 

· 1>1 
Because of the presence of IJ 

suffici<'~1t for a determination 

(2. 14) 

the number of equations i s not yet 
~ _,, 

of the relation l1etween Cl arid .{­
I 

as mi[ltt be expected from the fact. that the properties of the region 

inside s
2 

have not been t.e.ken into account. To get more equations 
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Here the Green's function is the same as the one use d in (2.3). 

We now assume penetrating fi e ld boundary conditions also on s
2 

i.e. 

) 

(The conditions i, and ii, could also be treated in an analogous way. J 

2. where we assume that lf' _ he.s an expansion of the form 

(2. 17 

if the region inside S
2 

lS homogeneous , but in 

the same way as 
-+2 

before, J3 :/= 0 if s2 contains a-t'l inhomogeneity, 

bounded by s
3

, which itself may be multilayered. 

In ordei· to outline the general 

the more ge:nera1- ca.se Bt:f O . 

structure of the proolem we consider 

By considering the case of 

outside th~ circumscribed sphere o~ of s1 and of ;: inside the 

e. \"? 
inscribe d sphe re j ')of 

(~ 

(\/ 1 t,.? 1 
equei.tioris f o r v.n ,p

11 

are de fin~d as in (2.10). 

center · in 0) we obtain two 

as follcws. The Q-matri ct:s 

Introducing the expression of 

(2.17) and ( 2. 4) . 
inside (. "' ...)2 ' by 

jnt o (2.16) we obtafr , from a considerat i on of 
~ 

comparing the coeffici ents of RC!-'f'n(t") / the 

_,... 
r 

(2.18) 

(2.19) 

(2 •V; \ 
• L~ I 



1 1 

11 (2. 21) 

We thus h ave the following system of eq_uations. 

(2.22) 

(2.23) 

(2.24 ) 

(2.25) 

It is clear that the procedure cr:n be ccntinued to the last surface 
-~N 

N enclosing a homogenc.: ous region and thus t] -::;: 0 and then the 

nu.'liber of equations are sufficient to get a solutjon. (i.e. a 
~> -.i> 

relatiofi / -:::: T Q. 

The last set of eq_uac,ions reads 

. . . ;!N 
'J'o solv.e i'~1e sy~tem one start: l)y el1.m1nating u.' and thus ge ttill g 

+t· ' '' "~ti " "1 '- '
0

' ;J'(I•J\ f' tJ·' • ,~nJ. n,, . .f' 0 wlC 1'rffi; ..; •... 011 ,,.ac.l.LX . ) .Or •E. J_nnerL·~-"· ' .:_,,,_r_._a,c_ . ~··le rer:urk 

that her·e, &s before, by transition matrix -.,;e n:..:an a re1ation fro:n 

Lhe eoefficient s of the :regular i'w1ctions to tl1e ~:oeffie:ient.s of the 
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irregular f'Lh"lctions in the expansion of the field (of course in the 

same region). 

(2.26) 

-;> .v-1 _. .,Y-f 
Next eliminating ()- and J3 a..11d thus getting the trru1si tion 

matrix T(N-1) for the body which is bounded by 5 IV-I and contains 

the (homogeneous ) enclosure 5 N. 

tN-?.. ::. T ( ll-l) ~ N-'Z.:: - [ Q /;/-I ( i~e.., FeeJ-Q.Ar-I( ~a..,L-J Tl;VJ] It. 

r N-1 N l ~-1 ~N-2. 
K L a ( r Y1 l? Q) ·t- Q - ( r Y, I r) T ( N) J ~ 

In general definiag the T matrix -1-{j) 1 for the layered object whose 

S . by t.Y?. )-l -- .,(J') ~ 5-l outer surface is j , J t 1 w one gets the 

recursion relation 

(2. '.27) 

Repeated application of (2.27) startine; from (2.?6) determines the 

T mat.ri x ~( 1) for the whole multi layered hody 

A co;;iparison shows tho.t the structure of the solution to the static 

field problem for a 1:iul tilayered body ha::> exactly the s a.me structure 

as the corresponding stationary scatterine; prcblr::·m c.nd the solution 

of the static problem is obtained by t.a1·;i.ng the Limit k 4t 0 ( wnere f.( 

is +,he wc.ve num1;c r) in th2 formul as for the Sf'attering problem [:+J , [ 6] 
This fact is to be e:x:pected in view of the general jJ1'.'ope1·ties of solu-· 

+,ions of t '.1e RelP.J1olt ~ ::> equation [ 9 J . 



I 

1 
11 
1 
1 , 
0 , , , 
, , 
, 
, 
I 

I u 
I 

I 

I 

1 3 

III The T matrix for an e.rbi ~Y<!:IL_num12._er _of multilayered bodies_ 

The T matrix for an arbitra.ry ncm:ber of multilasered bodies can be 

obtained as in ( 4], and [ 6] . However the translation matrices for 

the basisfmctions have slightly different properties in the static 

and stationary scattering cases. Simply lett:ing the wave vector go 

to zero in the translation matrices for tne spherical wave solutions 

to Helmholtz' equ.ation would cause one set of the translationmatrices 

us a 1m.it rnatrix fu"'ld the other set would h?.vc e,ll elements infinitely 

great. Orn:: thus has to tc>.ke the limit after multiplying by appropri o.te 

powers of the wavevectors (10] . 'l'his g1 ves three sets of tr1::1nslation 

rnat.ri ces for the different functions according to the gcon,etrical 

relation "between ari:;uments and tr&nslation distance. The two-dimensional 

static c:ase with its logaritmic l>chaviour is especially cornplicateCi.. 

One has to ~3tudy th:~ se properties explicitly to f",ee t!'l3.t in fa.et afte1~ 

m<Jking app1·cpriate defin.i tions fer bas.is fur:. et ions and. translatioD 

r.mtric:es !;0:;[1 the ·two- a.ad thre0-diJ:,ensional static case~:; can l>e given 

the s c::r,:2 a1gebrai c structure. v!e consiC.er the configuration depj cted 

in Fig. 4. The coordinate syste:m 0 is L::10S·2n outside u.11 of the 

Inside R.11 of S iJ 
-[,// 

the racl.i i r~}.j to 

sphe ri cq}. W1gl:::s. 

0 • are orj :;.:in s of ne•: coordinate svstern.s such that ' t. - .; 

S. · are continuous fur:ctions cf t:beir respecti v2 
l.J 
Furt.rl!~r rer;trictions on the allowed configurations 

will be giv·:>n in cl'J.e co<irse. fo r tlie surface fielcls we write 

( 3. 1 ) 

i :=: 1./!I 
• 

'.i.1i1e upper j n oiccs ref0'" tc ·t)ocly nuuber i and surface number j 

i ~°! ·1 J\I! . J I (,.l. I<-or the total fi e Jd . r We have the t,urface inte-

(? ,..., ) 
\ _) • r_ ,· 
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~ 
By considering r outside a sphere wj th center in 0 and containing 

all of the s~1 we get, introducing (3.1) by means of the boundary 

conditions, and expa11ding the Green' s function as in (2.4) and then 

-+ 
comparing the coefficients of rr lfn u·.> : 

}l. i l }~ O ~I (?I J' X 
LI ~,11 t..1 
1''-o 

(3.3) 

s 
are the e xparsJ on cc.•efficient.s for lf' as in (2.6) 

A~ain it is possible to extenrl_ the recioi1 in whicb lf' S i s given by 

:m expans ion in reg,1lar or irregular basis func:'.,:ons, as in sr-:ction JI. 
~, ~!• -+11 

In (3.3) we have V"i
1
= 0_;,.-t-Eri1 A translati on of the ongrn of 

functions gives 

'

.., ..,.. ' ~- ->11 'I (f_) l . ..). ) j/} ~// \ 
:(e_tf' (V~ )=f:?e .. l 11_ (it. ·fr. )'==.<;. r~ "'-· rU2., t11 (V; 1 , n ,1 1n ,, e.1 , tttt' ' 1 n1 .. 

)1 

Afti::Y introc1uci.!1g 

that (3.4) may be w-ritten 

( 3. 4) 

( - - \ 
:, • ') I 
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i. 1 

where t1H~ rnatricF::'-"' C( are defined. in complete e:malogy with (2.10), 

the inte gration now being over the surfaces S i1 . 

- }!.; I I ( ,~)'.~· -~ -:.'b) II ,•] . -'? // ] j 1 ---- r l& ( . -ro.. -c(... V' /-:.t:1 tv ( r. ) IL ~1 ... ile. - l H Ji 'j t ..... l n' ) 1 ·- (...Y" If I 

( 3. 6) 

~ ·-? -/> . ' •. ,. , _.., ( '." ... // ~ -~ ) ;-? _ i} I ~ - 1 .. _ v- • . =. 1.· , + ;? ~- y :: y . - ( , + CL • - C:.. • 
I r ••• r r J 'i r t - ... i j 1 l. J 1 J '-

( Thus -.:e have 
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r. < r. + C(.. • - Q.. • ) ' and where I ~ ,, -!I -Jo I 
t J 1 J t 

Q '1 are the expansion 

:a 
coefficients for r' as in (2.5). 

lj 
also Eq. ( 3. 6) in terms of Q 

In order to be able to express 

matrices we no-r,,r a.ssume (as in 

Ref. [ 5] ) that the configuration of the S j 1 : S 

that .,. ;~ < I ~,. - r: i, / . 

is such 

When this condition is fulfilled (cf. the discussion in Ref. [5] ) 
the change of origin of the r y o/ r1 functions is ex-pressed by the 

expansion 

It should be noted that it is sufficient to be able to find one 

inner point o j insic•_e s j 1 fo.:._which r)', < I ~j - ~ J 

is fulfilled. Af+,er int:?:·oducing (l- ( L) ":.:':. "'ll}}. (C ( C} 
1111' ).(11') f/11 1 

we g8t the equati on 

i 1 ~c. 1 
+Q (Iv,Ir)B ~ 

(3.'rJ 

( 3. 8) 

where 
Lr) 

denotes the transpose of R 'l'he eq_uations 

1:hich are obtained. by j nvoking the boundary conditions on the sj 2 

a1·e the sam:: aE gi Veil ~ :> efore in section II i.e . we now get 
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and similarly for the remaining and 

matrices c· S olnce . M. 
J j 

are the innermost surfaces the 

can also be those corresponding to Dirichlet 's or Neumann's boundary 

conditions. It is now convenient to introduce 

Q j :::: Q j 1 (I r, I~ e J ~ j 1 + Q j 1 
( lr, I>") S j 1 

(3.1 1) 

( 3. 12 ) 

From section II (cf. Eq. (2.22)-(2.25)) it follows 

~: -r· 
that a.·· a..'1d · f J are related by the total T TI:atri x for the layered 

body whose cutser surface is s. 
J1 

This T matrix will be clencted 

i.e. we hav2 

( 3. 13) 

·rhus ( 3. 5) a11d ( 3. 8) car. be written 

(3.15) 

We note that the at ructure of the equatic!ls of this section is 

completeJ.y c..naloc;ous to the corresponding ones ~.:ir stationa::.-'Y scatterfr1g 

[5] , [6] . Thus ti:te procedure given in [5J and [ 3] for the determin-­

ation of the total T matri.x :for the configuration of the N bodies 

can be used aJ.so in the .c:nt case. For example the T matrix- for 

t"'o rnult:Llr:.yered 1:•ouies L · c;:~ven -oy . 
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( 3. 16) 

We recall that the rn.ethcd of Refs. £ 3 J ano [ ~J treats the N bodies 

in a co1t1pletely symmetric way ace; is illustrated by the form of 

the two terms in equation (3.16) 

· · · , · · -r·1 I) This is Just tte f ormu.i a for the transforr~iac,1on of 1 t / referred 

to origin 01 to tbc cor:respo:1ding matri x T referred to origin Q . 

Using the relatiun 
..--

[ 
-!> -~ - ). 

r LIJ. ( (} .. , + ~") --· t.-
1 n »' 

valid for a~ < r· 

we can a ls o transform the basis functi-::ms to l'j_ new origin. 'I'hic: 

/ 

~ . -,.- -~ r r; (<;,} "t ".''!;> )1- 7 _ ll } f'J tr) t( ~o ) 

leads to a n ew tre;.r1sforn:od '.r rr:s.tr ix I ,._ ,_1\ (U..: '.J J Cl11 ··• '-~1: 1 

naticr, of (A17) m1(: (.1:2 1), and. \·.'hich i:::; valid for al1 

The obj'=ct:; co;:;:.:i. •bred so fa.r r<c:ve ccns:i.:otcd of co112,ecuti vely enclosinc 

.layers or systerJ.'; of sui~h ., •. ..l-.. 

OU J •.::CLS. 'l'l1P. proced 1 ire can b e generalized 

to object s consist:i.rig of scv<0:ral hc;;-:;0 genco;1::; but nonencl0~.>ing pcirts 

e.s illust:-ated ~ n Fj g. 6. Systems of such rcore general object~, can 

u1 t. urn be eri c :l_m;ed :in d iffc~ent. medifl. a::d. so on . rl'his fol:!. '.)WS in 
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IV Active and pas~.i ve bodies in the pres<~nce of a p rimary field 

In this section we will study a collection of active and passive 

objects (as defined in section II) in the presence of a prescribed 

primary field generated by far-away sources. Examples of s;·y-stems 

with active a..'1d passive objects can again be found in electrostatics, 

magnetostatics, heat conduction and. stat: ~ flow theory. As mentioned · 

before in el2ctrostatics metallic objects with no net charge and di-

el~ctrics are passive, charged metallic objects are active (constant 

potential :f 0 on the surface). In magnetostatics the magnetic field 

can be described by a potential and magnetized materials are acti V(7 

(with constant potenti8.1 ~ 0 on the surface). In ste.tionary heat-

conduction '.ff~ have active ob~ects such as objects with pres.eribed 

temperature or heat.sources producins heat at a given rate. The ;)ass::_ v':' 

objects are isolated or obje.cts held at zero tempera-Cure. Among the 

stationary l ;;.a11nar flow thc:ory \le f:i.nd the "'~ti \·e ob 5'.::cts as s01JTCf~3 

vri th a net flc1 .. ..- out of or iu .;.hrouc;h -::.heir ;:;m·f2.ces. H.:: re: th•.:: passive 

objects are object<" wi"c:h irnucme tr2.bJe surfaces. 

We shall s _,1c(r the case of an ar'bitrary nwnber N of surfaces with prescdb,.: : 

fields ( cf. Fig. 5). Assw:<ing first th3.t there are l'!O ot.t~r sources ue 

will deterir:ine the field outside the smc.llest sphere wit~-.. c c::n ter in 

origin 0 (Fig. 5) circu:rr:;cri1)in g the surfaces. As before it is possible 

::o extend. t..he region for as Jn sections II and III. On the sur-

face~; S,· 
" 

i ~,,. u1 (r. t-:: 
T t" t ,· 

\- ,· "' ( ~ ...... ) =.c..CYli l\C.~rJ,. r;, (h.1) This condition does not fix the normal 
1l I • 

"' L ~ 
cl::ri vati ves J? £ •\J ~I+" (I'") and t.herefore we a"s 'JI'.:~ an expansion of 

t", .. 'Y tu~ I r~:I)• =-) r~ t H .. V' f( n t11 l '?.11) 
the form 1 /,. ...,- •1 t b ~ ... ,.~ t v l i1 ! 

~;i; YI ~ E I I ( ..:t' • , ,, , ,. , , , , .1 1 1, ~ -= r , u r 1 'I'lle total f1c;.lcl. '"f \>' ) can o~ expan ded "r .. r 1 ., Tn T Fi 
_.,. n 

( 4. 3) 

('!'his expension holds for I" out;,;ide the r,J1ove .-::.en i..ioned sphere.) 
_,, 

By consider)ng t" outr,icle a sphe :ce with centc:;· in origi.::J. contain-if![~ 
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all of S • we get, using (4.1) , (4.2 ) and (4.3) together with (3.2) 
f. 

(without source term.) a-1'1.d u.fter expar1ding the Green.' s function as in 

(2.4) and then comparing the coefficients of IYl}'»(f): 

Using the translation matrices ar1d tbe definition (2 . 10) of the 

Q ina.tri ces it follows that ( 4. 4) can be w6tten 

~ 

Sinilarly if we consider V' inside the inscribed sphere of 

(witll eenter jn O. ), we fiwl 
l 

5. 
(.. 

( 4. 5) 

) L ( f I / I\ [< - II~- ~.'/ ) ~ f -1'"'• ~ ~ o -;. - .. ( n \ "f ~ s t"1 . • V L ,_. ~Y ~ ( r. 1~ f', e. vJ , \. v . ) £< , ' -
I I l v " i ;, l I h :.. «) 

n S· t ,. _,, • '"1 

I { ~ '') \-:1 '"t l ·P /.' t'l I. I 2 
- t"' lv r. v' /(e. 41 I'·~ v. I) .".),_,.I I 

1 n L I n L .,., _, 

,- J , ~\ r, f/ -:-,, '""""' ~ 11 • • ...,, J -::" j -~ + L. J. s Vi. ·L· ( \7 I r ll! ( r .. ~;··er..···· u. Jj r? e U/ , t:". ~ , .,. J If'/ J J l ii? j i1 
J'"d· 5 J • 

J """ ") -> // ( ..,,,,} ~ J lj1 - I r V/ ( v. -!" cl 
1
• - e< (.) v J:? e. Lt*' ~ r . 13 n 

In J 'n J 11..1 

f Clf·4 L::: 1, 1V (4 .6 ) 
As before t~1is can b2 simplified to 

( l· rr' 
t • I I 



I 
l I 
I 
J 

J 

J 
J 
j 

-1 

l 
l 

2 1 

of solving the system (4.5) and (4.7) increases rapidly with increasing/'{, 

Hm;ever, it car1 be t.een di rect}y that the solution can always te expre:;"~d 

er·> iT rt?i. Tiil I) N '(I )-'>i. 
in terms of R 1 V 

1 1 and "'\ l"'1f?e. ~ where of course 

T 0 i.-= -Q.0\!1<e,~e) Q0i.(Iv-,i~e.f1 an cl TNi=-QA1i(~e./~.e)Q..1.1i.(lr,Re.f: 
qOi. and QNl are the Q matrices for surface i corresponding 

to the Dirichlet's and Neur.~8.lm's p:coblem respectively. If instead of 

the field, the derivative of the field would have been prescribed we 
-1>k. -'PI( 

let Cv ~ /3 and interchange the prefixes /Vk and t:> k in the 

final result. Fer N= 1 we get 

( 4. 8) 
-;; 

TherP are in principle two methods of determining Dr . Ti:c first 

on Eq. (4.1). The is by operating 1·1ith the functiona1jJ..s)Uri
1

(V) 
5 

second m2thod is to operate v.'i th tje functional AU~tJ f oW'{v f~ { r"JJ 
S1 on Eq_. ( J,. 1). The second r;1ethod gives 

It i::: easy to see that this leads to a 

system of equations wi:1ich we get just by "adding togothe r 11 
( 3, 15) and 

(l~.5), (3.14) and (4,'() 

{ .-,~ ~ o·J(Cl.,) Tu, 1) Q~ r ~ ~u~t:1)[ T'-'1 t; -t-T"i J~ 
t;;.t;.l,K t -aK+1Jv 

(h. 9) 

(4.10) 

( 4. I 1) 
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. 
In this system 

-> t 
Q.. and 

~;,, 

cl are unknowns which we want to eliminate 
~ _,. 

in order to express ./- in terms of 0. . the coefficients of the ' . . .. . - . 
_,. £. r.N i. 1. ,\ 7:;l "+' 

source field, L~d C. =<-'( ([YjR~r-'r where ~ are the coefficients 

in the expansion of the surface field on body nrunber L We define 
. 

new matrices and vectors of dimension PI 
-+ 

with the indices L and J -...., 
in ( 4. 10) and ( 4. 11) as follows; Q. 

_, 
all components equal to Q. 

_,. i . '~ 
the first k components equal to a. for L !& k and the other 1\1- k 

~l 
equal to d for k< i <;N 

.... , c 
equal to zerovectors and the other 

k< i~N. 

Thus we get 

with the first k components 
_,.i. 

I.I- k components eq°ual to C 

r-~ [1~] [ TJ ¥ + [ fi] [TNJ l 

[l~t"] ~-= [1l-[f][Tls fj + t 1/-[cT] [ T;\']~ 
It i:--; easy to cet the formal scl.u-cicn 

f = [1~] [T] ur- [ a=1 u1r1 
[ /'~ "tj il + 

-t· [I~]£ ·J!-~ [TJ[ffls-
1
{ l T1;]-[ T '°]} f! 

Fro:m ( 4. 13) we c<~~ri draw several conclusions. First:!..y the prob1em 

for 

( 4.12) 

(4.1 1 ) 

(4.13) 

is, as expected, a superposition of two problerr:s: C1Ee with a primary 

fi e:: ld and all bo:1ies passive and the o·~hcr that with i< pass1 ve and 

qctive c odieE. . The bodies with :prescri tied fields have a 

. T') TN . . T matrix resp depending upon whether tte field or the 

scrirjec field e:ives l'ise to e. field as 111 ( . • :.l) whicll is ''propagated" 

by the 1;f mat.rices betw .. ,~ en a·Ll Iv' bodies in all po3sibJ e combinations. 

'11h jJ'd1y we ccn se e th.:ct the first in\•e•·s e w11ich, as menticned before, 

C8..'1 be calcnlatecl by the methods riven in Re f. [3] s.lso gives us a 

pos:·d.1Ji lity to 3;-2t, -:i:·2 second inverse dir:::ct..ly. We roraark tbs.t these 

f01 · a 8Cala r or a ve 2t0r fiel ~ . 
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V.~~Discussion and numerical applications 

The formulas gJven in the previons sections represent exact solutions. 

However, in very few cases is it possib1e to solve the various inte--

gra1s analytically and perform the m:itrix multiplications and inversic:-_::: 

algebraica11y. For some simple bodies of this kind there are anal::ti c 8.l 

results available with which the T matrix formalism can be com:pareC.. 

The T matrix for a sphere is diae;onal and the elements can be calcul<"teG. 

exactly. This of course gives the s:•.me result as the standard treat.r::e!~~ 

in spherical coordinates. Van Bladel [ 11 J calculates the field insL:.e 

and outside a dielectric spheroid in a homogeneous electric field 

(observe a missing factor 4 
3 

in eqs. (3.60) and (3.61)). The co-

efficient~ ()(/{ af'.d C(j_ are p1·opurtional to twc T mc.trixco1ern.er;ts. 'This 

exact result ca:1 a2_so -be 1:.Sed fo:r the case of homogeneous Dirichlet :s 

and Neumann 1 s boundary condi.tion. In Fef. [ 12] the field .iii:::.ide a 

dic::Le;:-:.ric sph'.:l'oil'l. in a m!:i.furm static elE·ct:.·ic f~_eld :..s calculated 

by i~1ea..'1s of a :r:ethoCI ::;lie_;htly differenl :::~rom tl:e pre!-:ent one. 

In 01·cler to get analytical results 01Je is mo:::,~}y forceu to treat sm·--

faces 1,Thich are coorJinatc :our faces of .::i. coordin8.te Sf:s tern in wh:i eh 

Laplace' s equation is separeJ:.,le. For surfcces not too nnch different 

frcm a coordinate snrfaee cne ca.ri apply perturbition theory similar 

to tl!at in Ref. [ 13] 'l'hc prob.lem »Ti~h two spherical ·bodies can be 

tr<:;nted e_nalyt.ically J D bisphe:rics.l coordinit es [ 14] . ·Further, by 

cari, nt least in principle, treat the p:ro1)lern. wi tb several bodies bou.'1ded 

by coordirrnte surfac0s. Hu . .:ever, bec:a'-..'.:ie of the very limited k.no;.7Jedg2 

of the tnmf' lad en proi-1·.':rties of t112 s e ~:olutions, u4.:.her than the spheri ~~-1 

oriCS, one mostly has to trr.msform to s;.iheY·i c al solutions, ma!\.e use c:'.' 

thci r tre .. w:lation prorerties, and then trcn s l:::te ·bc~_'k again. 
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Fully numerical treatments, by discretization, of the static field 

problem can be fcund e. g. in Refs. [15] , [16] and [ 11] . The T matrix 

method lies somewhere in the middle between the two extremes of a fuJ.ly 

analytic and fully numeric solution. In order to obtain numerical 

results, we consider the truncated solutions. The convergence properties 

of these solutions depend on a complicated interplay between such para-

meters as the dimension of the matrices, the geometrical dimensions of 

the varic.us bodies and their separations, the method of numerical inte-

gration and the number of intervals used, the specific choice of orig:in, 

the curvature of the surface etc. An in-depth study of all the various 

questions of the d~pendences of the solutions on these properties lies 

outside the scope of the present article. Here we shall only use the 

elementary stability tests conr>isting of an increase in the dimension 

and the number of intervals. 

'l'here are several other tests of t.he computer programs >·'hich can be 

performed. 'l'he expressi·ons for the Q matrices can be testE:d numerically 

for instP.nce against the relations (2.20) and (2.21) which we rP.caJJ, 

are valid for very g€:'neral surfaces. T'ne T and Q matrices for spherically 

syr:mJetric boJ.ies has t o be diagonal, which also is easy to check. 

Furthermore, the T mo.trix can. be calculated for different choices of 

origin. 'J.;h"' trai.'"lslation ma+;rices can then lie used to transform the 

T matrices to the smne origin and check whether they coincide . 

As an illustration of the T matrix formali sm developed in this paper 

we will give some nur.ierical values for T matrix elements (Fig. 7) 

co:trespon ~1ing to d.i.ffr:rent rotational syfl:1r:2tric configurations. The 

z-e.xis is taken as the axis of rotational symmet ry and the objects 2.re 

symmetric ally si ~uat.ed or: it. As primary f:i.c ld 1·;e take the constant 

p 
homo~en·'.'ou:3 ve cto1· fiel d If::-;:; (;;}nCV. 
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p p 
be expressed by /£:::::. - V \fl where 

I f:-:-1 
· t1 a. -::.: -\f'l!i.'s itt er a = - 4

-fy_ c..o s °" 
wi 1 e11 3 / eo1 3 For rotational symmetrir: 

configuration::> this is general enough. With our choice of rotation 

axis the T matrices for rotational synurretric configurations are 

diagonal in the er and t\t1 indices. It is sufficient to consider 

T matrices of the type T -T) f\ f'. 
, := I (WJ d 1 0 crmri,cr'm n' nn' rrrr t'Jllm' 

The integra l i;; zero c;.t the endpoint,~ o f thE: intcgrat_;_on inte rval. 

Frorii the gene ral express ions given in i.,he appendix it follo'.·!S that 
A 

the trcnslat ion matriceE for trill1slat :lon s + Q..~ are 

CrJ "' wz.,..;1 [ ( 2.11)! 1
11

-z. R ( :t a~) -;.::: (-1 ( 2f1+1 J -- , x: 
f!"mn,ir'm'11' ) 1 (211 1+'i)!(2(n-nJJij 

K (: YI I VJO-n') 0:-11' (::1) n-n' d' J, cf 
"' -m v-a- 1 ere m m 1 

, 
for 0 s n ~ f1 



I 
26 

1 
b(.S) ( '\ ( tn+H [ (2.11')! ]

112 

t\ + ai) = -1) (2 n-1-1) }( 
U-rirn,tr'm'n' - (211+1)!(2-(n'-n))! 

l 

1 
l , 

for 0 :s l'i ~ n , otherwise zero 

l 
1 
1 
1 

I I ' -n-11 -1 n+n 
h

0
+n} a. ( ) t 

:t7 0 rr u-' Jere J'rtl rn" 

1 for all > I> 0 tJ - 0 I n -

1 
The expansirn1 coefficients f

11 
for the secondary field with the so11:r~e , 

1 

First we treat two prolate s:pheroids with semi axes a = 0. J~ a.'1d b = 0. 25 , 
with Di richlet 1 s 21cl respect:i_ vely Neummm 's hoinogenPous boundrary , coridjticn case A r e sp. case B in Fig. 7. As the second c:ase, called 

case C in Fig . 7, we treat a permea.oJ.e proJate sp11eroid with semi axe s 

we treat the above permec.ble spheroid now conta:'._ning A. spheroid with 

Dirichlet' s boundar.)' co:idition . This case· is caJled case D in Fig. 7-, Finally we trc~;t the t wo f01))1c:roia.s in case A a'1u B. The spr1eroi d with 

I;eurn3nn 1 s bouJldr::.:ry conclii: io:1 is s ituc-,,c e d at a distance c~o.5 f:rom o.rig.ir. , on the pos1ti 'il'-' z-axis am_• tJ-,e sp'.Ju·rii d wi t;·i Dirichlet 's bo1u: "-,ry con-

di tion is 2ii:.11.s.tecl a:- a di'.·t:.-:.uc2 c :fron; or_i gin on the negat:i ve z--u.;:L, · 
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This is caJ.led case F~ in Fig. 7. As pointed out before these T matrix 

elements arc sufficient for the calculation of the secondary field ci:.~e 

to any scalar field </> which correspond to a homogeneous vector fit0'. ld 

JF given by rF '= -V ~ We note the following features of the con-

vergence properties. 'rhe T matrix elements appear to decrease slowly 

but the basis functions decrease very fast, compensating for this, at 

least for large distances. However, the convergence of the field 

expansion near +,he radius of convergence (i.e. the circumscribing 

sphere) was very slow. The matrix Q ( rY, Re) is unbounded as one 

of the indices increases which has the effect that the numerical acc-uracy 

in T might even be diminished, unlef~S the nu.'11.erical accuracy in Q.V~.e. 1 K7.e) 

and q(rY, K~) 

matris Q.(Ir,I .. ) 

is increased, when the dimension is jp_creased. '.Che 

which is used wherr the bodies ere layered, is un-

bounded in two indices. 'rhis W1boundefu1es will be compensated by a 

multiplication by ciD inni:=r 'J.' r.~atrix but here the requirement oi' better 

numerical accuracy whe n the dirrieasion J.s increased is rr.or<-~ pronounc~c~ . 

By the same prograr;.s we could equally well have made more succesi ve 

inclusions for surfaces other than spheroids. The ti;rn body configt;.;:-ation 

could also consist of more complicated bodies of this l:i:rid. 
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Appendix: 

Tr2nslation matrices for spherical sol~tions to the scalar Lanlac~ 

e quation in two &'1d three dimensions 

The basi s functions and their translation properties play an essential 

role in our treatment of the static many body problem and therefore we 

shall give some relations which are useful in this context. The two 

and three dimensional cases are structurally the came. All relations 

can be derived from Ref. [5] by a limit process [1o](cf. also Refs. (18] 
and [19J ) . We first state the results for the three-dimensional case 

( 18], [19] . Consic:e:::- two linearly :independent solutions to 

\72. lf::::. 0 (A 1) 

whi eh ve choose as 

Let 

E. 0 -= 1
1 

E»t ·-= 2 f ('),, m -:P 0 

and(;q,@, 4') be the spherical 

~ ~ ... 
, respectively, where Y ~a.+~ 

(A 2) 

(A 3) 

(A 4) 

By multiplying Eq_. (A 1), (A 3) and (A 4) of Ref. [5] with appropriatt: 

factors of k ( the waveve".tor k ) and then taking the limit ;~~ 0 

we get 

a.Ll a a.11of. If (A 5) 
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l 
'] 

l 
'1 
'l 
11 
w 

Cl 
[I 

lJ 
1 
'l 
"-' 

1 
1 

J 
1 
1 
1 , 
• 

and 

with (A 9 ) 

( 

f I) I I n n n-11 11-11 rn-rn 
,I( m - m' tn 1-rn •:X P,, , ( c (J s ?,) 

h-11 
I 

fo r 0-;£11 :5 h , otherwise ze ro (A10) 
I r . - ~ 

-, r:r ( ( 11 \ n ·H11 i( l ( 2 ( 11 -r n , ) +I) ! ( n+ n ' - m } m '} ! . . '-
~ =- - Y ? n+J r.. 

m ", ,,,' n' 1 Z) - 0 ( 211+ 1) ! { 211 1+I) 1. l n +n'+m-m ')!..1 

I n 
x ~ ¥r1 

I t) » n+n , . , 
.... 17 ·- h - I m - m 

-111' tn '-&11 a JO n + n' ( c. " r 7) 

for all ri:::o,. n'~ o (A 11) 
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x. {~ "' H'-11) n'-..., m-ni' 
rn - n1 I fn I - WI et p n I -11 ( (. 0 S 'L ) 

for OS n ~ f'1 
I 

, otherwise zero (A 12) 

Here (t i~} is the us ual 3-j symbol [20] . 

By repeated application of (A 5)-(A 7) we get (cf. Eq. (A 5), (A 6) 

:md (A9) ofRef.[5] ). 

R (r} (CJ:) R {r)( b) = R. (V)( c) 

{() ( 5) ... I? ( S)( h_,,) - ,, l s) I -+) 
I' (a.) I\ - f\ \ l 

o..ll a. O~nol b (A 13) 

a.lL a. 0..11.cl. b 

for a-= h (A·15) 

From (A 13) and (A 1 ~) we get 

< r J( ~ - 10 ( r) ( -~ ' - 1 R -(t)-' a.; o.ll q,. (A 16) 

/~ (5} ( - 'Cl)=!~ (5) ( rl)- 7 
a. l l Cl. (A 17) 

The explicit expressions for the )t ( C~J (f) : S 

I 

R
(r) -it / n-11 {rJ (- ,~ ) = (- /I (< . ( t) a.Ll a ( A 18) 
frli·1!11 [T

1
111 111 1 

') ([r;1i1
1

({'
1
}'1t 1H 1 

c s) ( -·.:io) ( /)11-n 'R· c sJ -iu; -G..-= - · Cl all a. · Rrrmn,rr'm':/ \ rrmn,rr'1:1'11' l (Al
9 ) 
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and the relation needed for consistency (cf. section III) becomes 

a.. (A21) 

where as before )..(f1) = 2n+1 

Finally, we have in the same way 

Consider r.ext the two-dimensional case and consider the solutions to 

(A 1), which we choose as 

(A23) 

-+ -+ 
Let (r, 'J) , ("-1 'f') and (~1 cf) be the polar coordinates 0f \r , CL 

~ ~ ~ ~ 
and R , r espectively, and let r -= Q... "+ ~ : By md tiplying 

Eq. (A11), (A13) and (A14) of Ref. [5] with appropriate factors of k 

and then t?_"lting the limit k-+ 0 we g~t 

~ f(lr) ( _,. }q_ .... all Cl Cd1ei ~ r~e Yi Crl =- ~ 
/1 

_u.). e.'f,, (R) (1'25) 
11 ' )t I lr I /1 

~ _,. fo,,. Q. > ;r r.,. lf tr> ~ [ v ,ta. J ~e- 'f 11' (If) (P.26) 
n 11 , nn 

' s l 
( ~) I ~ 'Y ~I (if) I l" lJ'i Cr)·::: t.. ~· I f ov Q. < iq (A27) 

J1 n I J1 11 ( 

with 
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--
1 
1 

1 
1 

for O:S tz 
1~ 11 , otherwise zero. 

\f_ (a)=. -2.lCti 0... J I ( 1- cf'Cl"O) cro,a-'o u-cr 

2_ n' I )! I rr ( 0:) -:.:- (- 1 J (11 '"'- 11 _:- :!__..:. a. - n - n x. 
\f er n I CI ' f'i I I If r E -, . ( n - l) ! VI I ! 

rttt tt' 

I 
fo:;_' all n2!0 I h ~ 0 aI!d by definition ( -1) ! = 1 

I 

( S) rf:"i, J'I-~ (· 1 1)1 1 

R ( Q.) = \/ ~ (-- 1) Ji - . a. n - n x 
0-11,u- 11 ' VE,, (h-1)! (ri'-nJ ! 

I 
11 -11 

a.. I< 

~ 

3 ?. 

(A28) 

(A29) 

fo;_- O~ VI~ n , otherwise zero snd by definition (-1)! = 1. (A30) 



• 
I , , 
._ 
t , 
' 
' 

' 
' 
' 
' 
' 
' 
' 
' 
' 

By repeated applica.tion of (A25 )-(A27) w~ get 

From (A31) and (A32) we get 

RrH(-°Q)-= r<.'i-1
(;}-

1 

R c s, ( _ d.) --= 1, c s > ( ii J - 1 

o.Ll et. 

a...lL a.. 

33 

(A31) 

(A32) 

(A33) 

( A34) 

(A35) 

The explicit expressioas for the translation matrices give 

I 

RcrJ (-d.'J;:::t-1)n-11 p(r) . (a) all a.. (A36) 
rTn,a:'11' ' o-n,TI'h' 

I 

Rn) (-C:)=(-l)n-11 ~o> ,. ,(-0:) 0. t { a (A3'7 J rr11,r:r'11' rrn,u i1 

11+n 1 _ 

fJ: '- ~)- (-1) G-: (ll•J f et- a.>() (A38) rr , , l u. - cr11 a-111' n,({ J1 I 

and for con s istency 

R( 5), la)=- \c.n; 
er n~rr11 Al n) 

~ lr) ( -)'I 
°'a:n,cr'n' -o..1 oll a.. (A39) 

J ~n l1>0 

l:here as be fore .\L11) = L 'Ii ~=O 

Fin c>.lly 

er er' n~ rr f1 
(Q)= 

f\ l 11) 
~M,0- 111 1 (-0:) for a.>O Ac 11'J 

(A40) 
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Fig. Geometry and notations for a twolayered body. 

Fig. 2 Outside the spheres are different expansions of 
functions valid. By successive .transformations 

to obtain (different) expansions valid everywhere outside 
of S 
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s . . lf' in 1rref'>ls. 
it is possible 
the convex pc.rt 

Fig. 3 Outside the sphere about 0 is an expansiori of lflS in irregu:J..o.:: 
functions valid. Inside the sphere about 0. is an eA.i:)mision of 

Y'S in regular functions valid. By successive trafisformatio;s it fr 
possible to obtain (different) exJlansions valid everywhere outside the 
concave part of S 

1
. 

Fig. 4 

Fig. 5 

Fig. !) 

Fig. 7 

Geometry and note.tions for two twolayered bodies. 

Geometry and notutions for two active -bodies. 

Geometries for which the T matrix formalism is appJ.i cable . 

Table of T mati·ix elements for different rotational symmetric 
configuratio~s where the z-ax1s is rotation axis. 
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