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The present paper ic an introduclion to and a summery of a thesis

consisting of the following papers:

I,

el

T8I,

W

T matrix for electromagnetic scattering from an arbitrary musber
of scatterers and representations of E(3), (together with S. Strom)

Phys. Rev. D&, 3661 (1973).

T matrix formulation of clectromagnctic scattering from multilayerad

scatterers. (together with S. Strdm) Phys. Rev. D10, 2670 (1974).

Matrix formulation of acoustic scattering from an arbitrary number of

scatterers. (together with S. Strém) J. Acoust. Soc. Am. EQ,Y?l (1974).

o

Metrix forrulation of acoustic scaltering from multilsvered cscatterers,

(together with S. Strdm) J. hcoust. Soc. Am. 57, 2 (1975).

Matrix formulation of static field protlicews invelving an arbitrary
number of bodies. (preprint T5-12. Institute of Theoretical Phvsics,

Gdteborg. )
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The notion of the scattering matrix has been used for many years in
nuclear and particle physics [1] . [2] . In the description of a
collision experiment this matrix gives the connection between two asymp-
totic states which describe the incoming wave field and the outgoing
wave Tield respectively. The theory has been developed along two diff-
erent lines. ccording to one line of approach one nas been trying'
to construct the scattering matrix starting from fundamental physical
axioms, supplemented by analyticity assumpticns concerning appropriate
measurable variables. In this form of the theory ihe dynamical equa-
tions of the process are inlierent in the scattering matrix. In the
other soproach one starts from the dynamical equations from which the
scattering matrix can be computed. In particle physics one has been
forced to use both methods because one does not have a complete know-
ledge of the dynamical equéticns apriori. In other branches of
physics, for exemple electromagnetic theory, the dynamical eguations
have been known since long and therefore the scattering matrix for
any given collision experiment can in principle Te calculated. Since
the scattering matrix contains all the physics of a process, its con-—
struction is not an easy task even when the dynamical equotions are
known. Integral eguations are well suited for construction of the
scattering matrix. Using this method one usually obtains recursion
relations for the scaltering matrix ia general operator form. However,
P.C. Waterman succeeded in constructing the scacviering matrix for
electromagnetic scactering from a homogeneous body, in a spherical
wave basis. This matrix is somewhat diiferent from the one used in
particle physics because it gives the scattered field at & finite
distance from the scatterer. For monccromatic waves tle scattering
matrix in Waterman's formalism gives a relation Tetween the incoming

; . : 23 .
and outgoing wave [3J . The incoming wave ¢ 1is expanded in regular
. = = 5

functions Re { : ’ T e ;
unctions Re ¥ _ yith constant cocfficients & as =) a Re ¥
n m m 5}
m
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The scattered wave Yy~ is expanded in irregular functions wtn’ which
behave like an outgeing stherical wave for large distances, with constant

T >3 5% a0
coefficients fln as = = 2: f‘r ¢:1' The radius of convergence depends
" )
mn :

cn the geometry of the configuration. The scattering matrix T is defined

by £ =:y.2nxn’ a 4+ In the construction of the T matrix one uses the
- {361
mn®

completeness of the basis functions (or gradient or curl of the basis
functions according to the character of the problem) for representation
of the surface field. The completeness cf different sets of basis func-
tions 1s discussed in Refs. [hJ and [5} . It has rot yet been clarified
to what extent the expansions can be used in the case of surfaces with
more or less severe irregularities such as edges, corners ete. The

T matrix is obtained as T = - Q(Re,Re)Q(Out,Re)-1 wvhere the Q's are
surface integral matrices with specific combinations of regular and
irregular basis functions. The precisce criteria for the existence of

so far. +The method gives

S

the inverse of Q(Out,Re) have not been state

vemarksbly good agreement when compared with other methods FTor far field

Tl

computations as noticed in Ref. 6] in various cases and by the present
guthor in a case with lossy dielectric ellipscids. One merit of the
method is also that one can trest scalar and vector fields also in the
static 1limit by using the same formulas. Furthermore the scattering
matrix for an asseubly of bodies can be expressed in terws of tlre
scattering matrices of the individual bodies and the translation matrices
for the basis functions. It is» the extension to the multiple scattering

problem which constitutes the muin theme of the present thesis.

Our starting point is *he single scatterer T matrix formalism given by
P.C. Watermon., In Refs.[:3] and [T] Waterman uses the compleceness of
the basis functious %o expand both the surface fields end the integral

kernel in Poincaré-huygen's principle. For the homogeneous bodies
il

treated in Refsf[_3j and [T] the vroblem is transforrad to that of



solving a system of infinite dimensicnal equations with the expansion
coefficients of the ivcoming field as known guantities and the coefficients
of the scattered field and surface fields as urknowms. Thus,by eliminating
the coefficients of the surface fields the T mstrix is obtained as a rela-
tion between the coefficients of the incoming and scattered field, and it

gives the coefficients of the scatterced field dve to any incoming field.

In the papers I, Il and V we show that this procedure is also applicable

bl

b

to the cese of an arbitrary number of homogerneous bodies, including the

static case.

The only additional requirement is that the

bodies have

to be separaled in a specific nol very strong sense. The procedure 1s

a direct

separate expansions of the surfsce field

bodies.

to relate the different kindas of

extension of that of Water

By using the trenslation properties of the basis functions

nwan

slilual e

o

Ooh

basis functions related to coordinate systems

Ao~
T

In our extended version one uscs

h body in terms of

inside the different

origins one

cbtains the total T malrix expressea in terms of the T matrices of the

irdividual bodies.

The properties and explicit realization cof the

trenslation operators for different basis furctions are given in the

appendices of I, I1II and V.

One gets & systom

of infinite dimensiocaal

equations of which Watermsn's is the simpiest one (for only one body).

The various

expansion coefficients can be treated as vectors

= = ; ek : :
{{a } = a’{f } = 1 and so on) in an infinite dimensional space

\i}

on which the different translabtion natrices and oblzct .related matrices

(i.e. the Q matrices) are cperseiing

; : : >
of equations involving a, I and o)

>1

=0 ;
where the o :s are the expansion

coefficients of the surfece field on body .iwber i. The number of

cguations exceeds the number of bodies involved by one snd the coefficients

a1

5

: the equationsg are noncommting.

the Q matrices can be rearranged vo

bodies.

The solution cf the system

o

By

inspection it can he fourd t

Yool

TSR]

give the T matrices of the varions

can ve written in



In paper I a procedure is given in which the T matrices of the

different bodies are trealed in a symsctric way. The bodies treated

so Tar vere assumed to be howcgeneous. A body which consists of

several layers, each of which has constaut electric and magnetic prop-
erties and which consecutively enclosc each other, is called multilayered.
The T matrix for several multilayered bodies can also be calculated by
means ol the above-mentioned methed, the only difference being that the
individual T matrices are more complicated. In papers 11T, IV and V ihe
T matriy for a multilsyered body is calculated by assuming expansions
for the surface fields on the surfaces surroundirg *he homogeneous regions
and by applying Peincard-luygen's principle in the different regions.
The result can be obtained by a recurciocn relation starting with the

T matrix for the innermost homogeneous regicn and the various Q matrices,
for the second innermost surface and then calculating the T wmatrix for
the innermest {wo-layered obhject. Then ors conbinues with the T matrix
for the lwo-layered object and the § mutrices of the next surlace and

so on. The results can bhe generalized in such a way that any system

of miltilayered objects can be immersed iu medias enclosed by surfaces
(of course with the same restrictions as wsfore) which in turn can be
taken together with other systems and limcised togelbher and so on. A
body consisting of several ncn~enclosing regions can be treated as a
multiple system of bodies. This intrcduces, however, muthematical
difficulties in treating the euges, corners and points which arise in

such a partition
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Abstract

In the present article we give a T matrix description for static
field problems which is analogous to the T matrix description of
stationary scattering. We treat an arbitrary number of bodies

which either are characterized by homogeneous boundary conditions
of Dirichlet's or Neuman's type or which consist of consecutively
enclosing homogeneous layers with different properties. Problems
with prescribed static fields or field derivatives on some of the

surfaces are also treated.
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I, Introduction

In Refs.[1] and [2] Waterman has given a T matrix description of
acoustic and electromagnetilc scattering from a single hcuogeneous
scatterer. This formulation has been extended to an arbitrary

nunber of multilayered scatterers for both acoustic and electro-

magnetic scattering Refs. [3] ; [h] R {5] and[S} .

In the present article we show that the T matrix formulation is
also well suited for static field problems. Thus the static field
problem for an arbitrary nwrber of bodies consisting of severszl
homogeneous layers consecutively enclose each other, is solved for
an arbitrary source. Furthermore, by combining the results in a
suitable way we obtain the T matrix for one body which contains
several enclosures, which may themselves be multiiasyered in the
sbove sense. The surfaces of the bodies as well as the geometriceal
conliguration of the bodles have to satisfy certain fairly weak
geometrical conditicns. In the case of one multilayered body a
recursion formula Tor the T matrixz itself is cboained. In the

st

tic problem the T matrix refers to expansion in spherical solu-

&

tions to Laplace's equation. The itransletion matrices vhich de-—
scribe a change of origin in these soluticns play a central role in
the proolem with several bodies. We review the properties of these
translation matrices and show their relation to a singuler limit

of a unitary and a local representstion of the two-and-three-dimen-

sional Euclidesna groups (i.e., the gronps of rotations cnd translations

in two and three—dimensicnal spaia). [3] . [5] .

plan of the present article is as follows. In section IT we give
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object, and in section III we extend the treatment to the case of
an arbitrary number of multilayered objects. In section IV a fieid
problem with prescribed fields on an arbitrary number -of surfaces
and a source is solved. The extension of the resulis in sections II

and IIT to some gecmetrically complicated bodies are also discussed

here. In section V we give some numerical applications. The formulece

for basls Tunctions, translation malrices as well as some general
s &

roperties of the ilranslation operators are referred to an appendi
prop D appendix.
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IT. The T-matrix for o multilayered bodv

We shall consider a scalar field sstisfying

V?“(}J':U (2.1)
The sources determine the primary field. When bodies on which
different types of boundary conditions are prescribed are taken

into account they give rise to a disturbance which we call the
secondary field. The determination of the secondary field will

be made by means of a trensition matrix formalism which is patterned
on the T matrix description of stationary scattering {1] —-[6] . In
this formalism the transition matrix T gives the secondary field in
terms of the primary field. The disturbance is caused by the bodies
only, i.e. any reaction back to the sources of the primary field is

neglected.

All the bodies considered in this section are passive in the sense
that the Dirichlet's or Neuman's bowondary conditions are homogsneous
or we have a penetrating field condition. In sectien IV we treat
the case with active bodies by which we mean a body con the surface
of which the field or its normal derivatlive tske prescribed nonzero
values. Vor example, by this definition we cz2ll & grounded matallic
body passive while a charged metallic body in electrostatics 1s
called active. The T matrix will refer to spherical field sclutions
of (2.1) in the three-dim=nsional csse and cylindrical field solutions
in the two-dimensional case (cf. Refs. [1] R [5} and [é]). The two-
and three-dimencional cases have identical structure and they will
be developed simultaneously [1] . [57 : {6] We shall now consider

j I . 16 5
a body consisting of several consecutively =nclosing layers as in

A

Fig. 1. The coordineste origin is chosen inside the body end the

primary field is assumed to have no sources i.e. in particular no



singularities inside the body i.e. it is represented by an expansion
in terms of regular fields whereas the secondary field is represented
by an expension in terms of irregular fields. This is in contradis-
tinction to the corresponding scattering problem where the scattered
field is a linear combination of both regular and irregular solutions
constituting an outgoing spherical wave at large distance from the
scatterer. In fact the static Tield problem can be obtained as a
long wavelength 1limit of the stationary scattering problem and in
this limit only the irregular solutions surivive. OF course, this
can also be seen from the fact that in the static problem only the
irregular functions are bounded for large distance. 9}(?} is the
total field which is the sum of a primary field l+JP and a sscond-

ary field %}S

~» g > S >
U(r) = =) V} (F)
We shell use the folloving surfaceintegral representstion of the

Tield q)

e

5 2 oafwo.c.s
i W, (F )_/S\ =] f_f’ for 7 insiole 5

9J+ and V7SU+ are the limits from the outside of the total

>,
field_(%} and its gradient ano.C?(I' ” is the free space Green's

-
function. The Green's functions normalized according to (7 (If f
N - \
O A T i ) I / i A ;o e
e =i are \Lh}i“ }/)/z;., and i/(vrc_/r rl)
in the two- and three-dimensional cases respectively. The expunsion
of the Green's function in a complete set of solutions of Laplace's

eguation is written

=y ‘?P'f ., % V4 ) & r £ ;‘s
\cj.(};v—-r) =2 AW Lry, ): 2l (¥e) (2.4)
n '
whers 1 iz 4 shoviensd notabtion of soveral indlces,
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In the three-dimensional case )\U?)‘:‘- where n on the right

‘ 2n+1
hand side correspord to the mwairn indez of the legendre pclynon.

In the two-dimensional case

L

2n
AMn)y={ 7

2

f‘r l]UH are the irregular and Re (}/” the regular solutions of

h=1
h=0

(2.1) (see appendix). We shall consider a source field Li) given by

p= Z e Re l{l (2.5)
tlj = h 4!
(This expansion is valid out to the sources of L'U . ) and a secondary

field given by

S
lTU =% f“ Lv (7’/“ (2.6)

wnere F??Da 3‘.':; ma:(' !ﬁ E’Si

This expansicn is valid for ¥> h'ax
5y

(Fig. 1). By defining new coordinate origins 0,: zceording to the

M

tvo generic cases depicted in Fig. 2 and 3 it is possible to get

expansions of the secondary field valid around any prescribed point

outside 8, (cf. Ref. [(] ). Fig. 2 corresponds to an expansion
in irregular functions snalogus to (2.6), in = new coordinste system
.

. 2 (o 9‘
0,, valid for the new radius o> ¥

Fig 3, however, corresponds
o = 3 + 3
I -3 4

to an expansion in regular functions, in a new coordinate system 0.,
. » 1
. 5 2 L
and is valid for Fe <P where
t e max

ance from Oi to S‘I' OF ccurse the new expansions are calculated

novw is the shortest dist-

from (2.6) by using the translation matrices for the hasis functions

(cf. Appendix). The trancitionmatrix T with elements T"‘h'
1.

.fH-.:Z TM, @, (2.7)
k'

satisfies
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An explicit expression for T for the case of consecutively enclosin
homogeneous layers 1s obtained as follows. By considering § inside
an in 51 inscribed sphere with center in origin we get, using (2.3),
(2.5) and after expanding the Green's function as in (2.4) and then

>
comparing coefficients of e ‘Y’/ (f’)

/‘x(ézfa{s T, (7 vIr %(y') =
_‘[v &V_{_(}‘}]T}“ (Y )} (2.8)

l

Equation (2.9) is obtained by conmuerﬂng " outside the circumscribed

sphere of 51 with center in origin using (2.3), (2.6) and after ex-
panding the Green's function as in (2.k4) and then comparing coefficients
of Iy W y,
/( ; Tl
= hn) (s W, (F VA k;—/ (r')
S, 1T ;

4 - (2.9)
— e b)Y '
V', (F)] Re W, G )}
Boundary conditicns of interest are
i) Dirvichlet's condition W, = (J on $_7 .
A
ii) Newmsann's condition KV '\; i"-"»‘O on 5? 5
iii) Penctrating field condition ga W, = Q L[/l!
t T Lg V= /
A A 4 e
F TRV .:__\/(_ ;1‘17[} o
(| . ¢ _ Gt Js .
‘}"“0 \]ZT 1 L[ (]
i . . S -l . i
(g}_ is the limt firom the inside of the field ‘-‘V between S.l and Sg'

As is well known these three boundery conditions have applications in
such ercas as electrostatics, magnetostatice, heatconduction and static
Tlow provlems. Ve went to wse a suitable camplete system of functions
Tor the expansion of the boundary values of the field and its normal
derivetive on ST‘ The probler is then reduced to a system of eguatiocns

for a_ . f] and the expansion ceoefficients for the surface field [‘1 .
i <

The cozpieteness of the regular wave sclutions to lelmholt's eguation

are estanlished in Ref. {1] for the three—dimensional case and in Ref.

for the two-dimensiconal case. The completsness of the solutions to

gy

e 3



Laplace's equation can be found in an aralogous way.

When making an expansion of the surface fields it is necessary

to reguire that the radius f‘{éa‘,tj) to points on the surface is con-
tinous and singlevalued.

By expanding the field on the boundary according to case

A < 1 A )
i) 1] w 2z 0 nVie
iy 1Tl By

1
B e 2 &, Reuw
H ' rn

1 1
1) Y _ 2%: iaam Re W, }5 Ly L,l/n

f?

and defining

) Q [;,/\e) )z;»a)fa. . %{P’)Vf?egu,,(ii‘
2

A oo Yo .ﬁ') ,,,5,“% i e gl lg?i
i) an'(iy/ /L\*‘E')"m}‘(:‘yj“““n ¢ L- I/ F#{?{Li/‘j "\’v_ Lt/‘f_?,u y,
2] 4 5‘ &

1 2 1 \ il (7 A T ol 2l ST SRS .
1340 QI" ¢ (Ip, f,g‘/ ;._-*'.';U;) -5 /,_L‘ -Z‘L'IIL’;?U’!?;"T‘ E’“\&,%ﬁ( /;}
!;l 5 é_c‘ =

7 _
;{*1 Fr I { n Vi 7 E’:,} 2.
e T, U7, 7))V Re R AN (2.10)
Ho -
The first argument in CDQ’ telis whether the function assnciated

with the lower lefi index is irregular cr regular and similerly for

the seccnd argument and the lower rigit index. We note that

B by <. _ N} Ml (
an’ (éi!", [’?Q) = - ‘):A(Nm‘;) Lt 8 :u, I;f}

__ef::. . 2 P ¥, x(m ,_'/V?
Q [U fe) @ :j @ (LvKe)- o (

!

N

b

[KRe,
}(fv"/‘ ~<H"V i

For a hemogeneous ‘;;ocly characterized by penetrating field boundary

o & - . voeos N 5 i 4 Ly . - »
conditlon ‘L.e. emae 12dj. the cosifXerents r;;i nave to vanish
$

othervwise this would 1mply a source in the body. Thus for bomogencous
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bodies (case i, ii, or iii with BH = O ) the T matrix is obtained
1 .
by means of an elimination of the 0('":5 . From (2.8) and (2.9) one

-’
gets, using a vector and matrix notation QE{Q,H} ete. the equaticns
~» 1 =>4
a= Q (Ir, Ke) & (2.11)

[ =-Q" (ke pe) &

and thus by definition

(2% 120

SRS =1
T=-Q [#e,Re) Q (Lr, Re) (2.13)
For the mcre general case of a nonhomogeneous body with another
L . lad
surface 82 inside 51 we have to require f3!1 .d,_:o . The layer betwveen
S, and 82 does not contain the origin end therefore an expansion of

the field in this region contains also irr. parts conseguently we
[
must assums 5}? *:'fj . TInstesd of (2.11) and (2.12) we get

1 3y 1 o1
3:: Q (ZV;"I;\‘@.) U“f"‘l’ Q ([V,[f’);\? (2.14)

- s Y
= G (Re,Re) O - Q" e, Ir)B

5

(2 1b]
Because of the presence of h’ the number of equations is not yet

- rid
sufficient for a determination of the relation between & and ‘f‘

as migiit be expected from the fact that the properties of the region
inside 8§, have not been taken into account. To get more equations
ion for the Tield if'J Letween the

surfaces S‘r and $,. This yields

- Zz
J Q?
- . #
) y i between S,cnel §
—q(|P- N v (Pl -{r§> . t fa
S A ML [i7 oulside Sqonck S, \7°
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Here the Green's function is the same as the one used in (2.3).

We now assume penetrating field boundary conditions also on 82 i.e.

1T = < Vfﬁ.vl‘[-_—){’\.vz
?1%» oo, Yt ey Ny 2NV

(The conditions i, and ii, could also be treated in an analogous way. )

where we assume that (%/?_' has an expansion of the form

(217

2 2
wZ =20, Rey, + B, Iry,
n
-
Here 62-'-::- O if the region inside 82 is homogeneous, but in

e
the same way as before, B .‘:":' 0 if s, contains en inhomogeneity,

2

bounded by 83, which itself mey be multilayered.

Tn order to outline the general structure of the problem we consider
Bl g

the more general case :,FO . By considering the case of ¥

=

(o]
outside the circumscribed sphere :fl of 5’7 and of ¥ inside the

L L o i :
1nsecribed sphere :)? of S‘Z (both with center in 0) we cbtain two

) 1 ;1 2 '3 ! :
equatiorns for Ofn , ‘?ﬂ 5 Ct’“ and Bi* as follews. The Q-matrices
” . " X 4
are defined as in (2.10). Introducing the expression of Y
-
(2.17) =ana (2.4) into (2.16) we obtain, from a ccnsideration of P
( +
inside 9 > by comparing the cozfficients of RQ—\i/ﬁ“') , the
equation
4 okl B LA 1 . i >1
O":‘- i GE, (i‘r}}\a/j G« o C%. (IF;J.’VM ’2 g
-eg ey
2 ~> 7 2 y
53 o =) |
t 0 (Irne) " + @ (Ir,Ir) (2.18)
o 5 : . ! 5 .. ©
Similearly we obtain 1rom a consideraticn of P outside f"
4 ] >t oA, ! >
== @ (Re,Re )i & ~Q K, Iy £ +
J-—._"_’cz igef
ra. oy 22 € pg 2
TQ ‘(:‘i'-i’,/“\’c;} o - o+ Q UH?-,.?I*) B (2.19)
s ! i ana s S “ e
The notation G ( 7 )J‘. . neans that ;?Q nés?f , and }{0 = }(’_1 .

e

A direct calculabion, using Gauss' theorem yields

’? (t"s‘c;{ Ke = CQ v IV}}{ # (2.20)
4

;
/ -
Leg
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We thus have the following system of equations.
d=Q (Inke)E +@ (1, 1,)E"
]?'-'— -Qq(ﬁe,ﬂa)f"’* Qq(/{’a,fr) B
= Qa(Zrl Ke) §2+Q2(Ir;fr) E,'z

-3 4
2

1 2 2 2 -
B'=-0 (Keke)ty —Q (Re,Ir)l5 "

(2.22)

(P23

(2.2L)

{5, 05

It is clear that the procedure czn be ccntinued to the last surface

-'a’,y
N enclosing a homogencous region and thus /4] = ( and then the

number of eguations are sufficient to get a solution. (i.e. a

-5 33
relation ~l£ =T a )

The last set of equations reads

-~y p—-2
[

b

A1 . ~pdr=7 -
QU ()t Q7T (I Ie)

) —> A7
fff" 2 —C{” ?(fi’é/"\&) = Q ‘(K’A,EF)B

;Af"l A,C_Z;:

i

)cs»

}3#/?-[ - ‘___Qlﬁf( ‘ ,_(lféj &/

wel . 171

.. . N .
To solve the system one startc by eliminating b and thus gebtting

the tranzition matrix T(N) for the innermost surfacs. We remark

that here, as before, by transition matrix we mean a relation from

the coefficients of the regular functions to the coeflicients of

the
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irregular functions in the expansion of the field (of course in the

same region).

Bol= T(W) B = - keite) @Uzrie) TEYT (226

P At A=l
Next eliminating (1% and B

and thus getting the transition
matrix T(N-1) for the body which is bounded by ‘Slf—-l and contains

the (homogeneous) enclosure -S,/'

B e T (w-t) &7 = —[@¥ (Re,Rd) - RV (Re Lr) TV~

o -1
@YDk + @V IR INTW] &7

In general defining the T matrix T(j} for the layered object whose
-s -
outer surface is SJ , by B 5= Z,, T( ) j one gets the

recursion relation

Tj-)=~{Qq 5“’(1&,,;'@_) e Q“’—l\/i?e.,fr) Téj)] :
- - he -1
Q7 (Tr ko)t @I T ()] o

Repeated application of (2.27) starting from (2.26) determines the

T matrix T(1) for the whole nmultilayered bady
o J

A comparison shows thut the structure of the solution te the static

field problem for a multilayered body has exactly the same structure

as the corresponding staticnary scattering prcblem and the solution

of the static problem is obtained by tsking the iimit K-G0 (where ke
is the wove number) in the formulas for the scattering problem [L] s [6] ;
This fact is to be expected in view of the gensral properties of solu-

. . . - L
tions of the Helmholt's equaticn 19] .
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ITI  The T matrix for an arbitrary number of multilayered bodies

The T matrix for an arbitrary numwber of multilayered bodies can be
obtained as in [MI, and [6] . Howecver the translation matrices for
the basisTunctions have slightly different properties in the static
and stationary scattering cases. Simply letting the wave vector go
to zero in the translation matrices for the spherical wave solutilons
to Helmholtz' equation would cause one set of the translationmatrices
as a wnit motrix and the other set would have 2ll elements infinitely
great. One thus has to take the limit after multiplying by appropriate
powers of the wavevectors [10] . This gives three sets of translation
matrices for the different functions according to the geometrical
relation tetween arguments and translation distance. The two-dimensional
static case with its logaritmic behaviour is especially ccmplicated.
One has to study these properties explicitly to see that in fact after
making appropriate definitions for basis functions and translation
matrices both the two- and three—-dirensional static cases can be given
the same algebraic structure. We consicger the configursticn depicted

o
in Fig. 4. The coordinate system O 1s chosen outside all of he djj a1
Inside all of 55' ,Oé are orizgins of new coordinate systems such that

~p /s )

the radii Plj to Si- are continuous functions cf their respective
srherical angles. Further restrictions on the allowed configurations

will be given in due course. For the surface fields we write

ll Ji LN —s g r':j . , o
[ 3 ”z""‘v""}? ! e +Z§’ ].8’ 4 Vs
p_h )= ey Rey, (R + B Lew, rgl]

’
The upper indices reie» tc body number 1 and surface number j L= 7;/@/

A _ - c .
L{. ¥or the total field 31 we have the surface inte-

1
.
-—%
-~
N,
<

Tva R - > 44 ~
gral revresentation:

i e ,
11 (¥ - P 1 D B
VO e iy s fyr (F)9'5(1P-7) -
ki «
0 J 'g-h Pt 4 v . .
S i e AL !’
P ‘ Owbsiala 5, a-lt
___r g 194 "?‘ .} '\f{irﬁwixsflé 5 ‘_.ai_/'(‘ -l . 7, P (3
fH N it [ Luglsda Oné of 3.
. - ~ J s ' SRE
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By considering F outside a sphere with center in O and containing

all of the SL? wve get, introducing (3.1) by means of the boundary

conditions,

and expanding the Green's function as in (2.4) and then

*
comparing the coefficients of Lp ({/ﬂ(a‘f.)

o= Ath)

iz

[ fas i 5[ B2 ey 7 Res, iy
i/V :

o

i1y
Z

I Hia = ¢ /" > /7
Re, (in)) V' Rew, (F))] b, +

Sy Ry, (M) Irw, (V7)) T Rew, ()
)

" ¢
7" I %Un’(?':; )] fgn‘j (3.3)

where 'FH

e
are the exparsion ccefficients for l.F as in (2.6)

Again 1t 1s possible to extend the region in which &P 1S given by

&1 expansion in regular or irragular basis functions, as in s=ction TIT.
-—’, o
In (3.3) we have 57"" C'“f"f"iv,; . A translation of the origin of

y {8
the Ke RI i

functicons gives

15 XS -2 ‘} l'?" - "'f"l[ ‘

I‘Q‘%’;;Usq)“[z@"(fﬁg i !f; '} = "e an' ;) Re. Y ) G
'V‘ ) -...‘_; }\(‘f:'f; (‘:‘; -5

After introducing }‘1 ”_?,( g E;:\‘E’;?,) ?m‘ii(ai) it follows

that (3.4) may be written

0 R e DYk B A W=t 0% -
d= =h R (7)) & (Re f2)b +@Q (Ke,Ir) B (5.5)
i {'ﬂf/‘,’/ q
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where the matrices Q are defined in complete analogy with (2.10),
the integration now being over the surfaces SL1 .
- - * -
Similarly if we consider P inside the inscribed sphere o{- Si? (with

center in DL ), we find

(v) 3 i1,
Ezcch,i?n,n &;) == Mn) E[Sdi % e
¥ SH

4 ~» ~% ){ﬂi T’-’h %
[0 Tr, (g ][ Rey,, (r0) = S5 De, (727)

> => 1t Ll g s ‘
z\?’ff’.e. L{"m “’il )] /L‘rn‘ g ...-_..[_(7 Lry, (rt'!)]l;’%’l(yﬂi)

4

”""’E"‘ h(‘( (L c{)V I}"/‘.( i:,/.],ﬁl)_f_

rot A 2 “ - A it -
+.Z j&’l'éS ”J' Wi E-—[_V Lr%(’r‘j? ‘w‘j"Qé}j"’?‘a?’”,_{*’ﬁj“
o

£ . —~% 1 -—:v,';
("' ::_J’ ( A - —_—
; L7l U “J“" ) f.{ Let, (ryq)
D L]
N
o Py - 2 Nt e )
- T w (K2 c‘:zb.«g.) 7 Le (¥ ) g
Hos llrz ( Ji J L[/n J1! w!
{
7[(3}” .’,':-'7,/%" {3.6)
where we heave used
. % £ R Y —.? ~» ‘}/ iy _.;,
L4 "~.4l "? 7 _ -_’% ~3 -? ¢ —_ — (’a #*, - C‘:
ceFle Pep, = Vo a.—F, = T ¢, T -,
S ‘ Vyz PRl BT ¢ J1 J -
in the Green's function in the integrals over f) . (Thus we have
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Dl =5 =¥ y
Y. </ oW - cop =i QN ), &nd where QL are the expansion
4 51 J ¢, ]
coefficients for 11/' as in (? 5) In order to be able to express
also Eq. (3.6) in terms of Q matrices ¥e now assume (as in
Ref. [5] ) that the conflguratlon of the S P is such
> J1
EhEL s . / i CL
J1

When this condition is fulfilled (ecf. tl.le discussion in Ref.[S] )

the change of origin of the IY l.f/n functions is expressed by the

expansion
> -
Lry, (P +2;-2,)=2 O, (&-@) Rey,, (F1) o

It should be noted that it 1s sufficient to be able to find one

/ = ==ty
inner point 0 « inside 5,}7 for which B l < IOLJ — G I
ig fulfiiled. Af*er intrcducing U ( ) = htn q- € )
A(ﬁn Hupt

we get the equation

i =i
U(QCJCL C{ Ir,Re)O(”-PQ IrIr)d Fa

+3 Tz )] (ke,re) B0+ Q" (Re,11)E V]
D
T

vhere R denotes the transpose of R . The equations

for L=LN  (3.8)

vhich are obtained by invoking the boundary conditions on the SJ 2

are the same as given hefore in section Il 1e ve now get
Fhe e 8 A )2 £ 1l
G (IV,K@)G/ + @’ (IV,IV)BJ J=L N (3.9

BY1==0" (ke k)% -Q ke, 1) §1° j=IN 0
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g gic .
and similarly for the remaining (% and KS L= 3 AA_
A&
Since S. M are the innermost surfaces the C? J
o'ty

cen also be those corresponding to Dirichlet's or Neumann's boundary

matrices

conditions. It 1s now convenient to introduce

a7 = QM Re) 629 '+ Q' 1 1) B j=tLa e

f'=-q e te) 8- @R, IB T i G

From section II (cf. Eq. (2.22)-(2.25)) it follows
- 3
that &’ and-i?) are related by the total T matrix for the layered

body whose cutser surface is S- . This T matrix will be dencted

J1
-T—(j,?) i.e. we have

== : - ¥
f —;T{}/I) & Jx/l/‘"/ (3.13)

Thus (3.5) and (3.8) can be written

(DT, » = =i e R T - S
R (G:‘;)CL = ‘fZQ(‘Q—i'@’“;,—) l()"}) CL L=LN (5. 11)
B

7[ 2 3?“) 4)7—(),1}3

jl & (3153
We note that the structure of the equations of this section is
completely analogous to the corresponding ones for stationary scattering
[5] . {6] . Thus tne procedure given in [5] and!jB] for the determin-
ation of the total T matrix for the configuration of the N bodies
can be used also in the =nt case. Por example the T matriv for

two multilayered bodiss i. given oy.
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T, =R G Ty [1-T-3,2) TepT e, 3) Ty )] -

o~ vl = v
[ 14Fe2ea,) T )R @, - a.oj R )+

o, " S
+ R )(a’z)T(z,z)[F T2+ T0,Y) Teded) Tee)) =

[7"' U-2, @) T, ) )“?Ut L:,'fz_]}? E?) (3.16)

r =
We recall that the methed of Refs.l.BIEHMEES] treats the N bodies
in a completely symmetric way as is 1llustrated by the form of

the two terms in eguation (3.16)

" D) 3 Fe |' rd
1+ T(2,l)~» 0 wen [, >R () TUIHR (a,).
This is Just the formula for the transformation of ‘T(I,I) referred
to origin CZT to the correspending matrix T referred .to origin () ’

Using the relatiocn

e (t) -ta ¥ -3
- =% .0 % . "t y o 3
Z:” ij'ﬁ(g"“‘) i ;:'7 \mz'(("' ,L?“(“?,(:} valid for @< ¥

we can alsc transferm the basis functions to = new or4g1“. This

-p=

( l —- (?“)Z' -y
leads to a nev transformed T matrix | *:[ ¥ (ﬁ».); 4 } u,{)‘

That these two wuvs lead to t?ﬁ seme ansver can be secn from the

= () =P (St g
(’w‘) ? C*;

relation R , Which 1s obtained from a combi~

-
nation of (Aﬁ?}euyﬁtkz1), and which is valid for all Q& ,

b=ty

The objscts conszidecred so far nzve consisted c¢f consecutively enclosing

layers or systems of such objects. The procedure can be generalized

|._J

to aobjochs con

rq

e Eal
isting of seversa

homogencous but nonenclosing parts

£

as illustrated “n Fig. 6., Systems of such more general objects can

5

in turn be enciosed in different mediag and so on. This folliows in

the seuwe way as for the shationary scatlering cuse treated in Refsnl h]

and [63
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IV Active and passive bodies in the presence of a primary field

In this section we will study a collection of active and passive
objects (as defined in section II) in the presence of a prescribed
primary field generated by far-away sources. Examples of systems

with active and passive objects can again be found in electrostatics,
magnetostatics, heatconduction and stat' 2 flow theorv. As mentioned:
before in electrostatics metallic objects with no net charge and di-
electrics are passive, charged metallic objects are active (constant
potential #=C) on the surface). In magnetostatics the magnetic field
can be described by a potential and magnetized materials are active
(with constent potential=f () on the surface). In staticnary heat-
conduction we have active objects such as objects with prescribved
temperature or heatsources producing heat at a given rate. The passive
objects are isoclated or objects held at zerc temperature. Among the
stationary lzminar Tlow theory we find the active objscis as sources
with a net flow cut of or in “hrough their surfaces. Here the passive

objects are objects with impenetrable surfaces.

We shall s ady the case of an arbitrary numbér N of surfaces with prescrilbed

fields (cf. Fig. 5). Assuming first that there are no other socurces we
will determine the field outside the smallest sphere with conter in

origin 0 (Fig. 5) circumsecribing the surfaces. As before it is possible

S

to extend the region for \{J as in sections IT and III. On the sur-

A P
Taces 3.’ w2 assume that we have the prescribed fiel L’U (?‘ ’

— P
éC" Re‘;’;eér' (4.1) This condition does not fix the normal

e(\

S
!i' .
rivatives i’? 'Vl;/, ) and themf‘om we asswme an expansion of

’ 4 ,
the form 6*,2\"?115/_' (,‘/ WZ. “a il VIL?{’," {""”) (l'fa)

3
b ¥ ) !,ﬁm 1 A 3 ! G or=s I ( X
The total [Meld UF4¥ ) can be expanded L%«’J } = 27}? Fy f’} (L. 3)
-p
(This expension holds for ¥  outside the above mentioned sphere.)

-’ .
By considering ¥ outcide a sphere with center in origin containing
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all of Sl: we gebt, using (4.1), (4.2) and (L.3) together with (3.2)
(without source term) and after expanding the Green's function as in

(2.4) and then comparing the coefficients of I;r LH’)(F)
{, = )\(n) fa»s n, E[W Re n(?al)) Rey, . (F!)' -

—Re-‘r"n“’a) v I?aq/n,(zf',f'm;l]} (4.1)

Using the translation matrices and the definition (2.10) of the

Q matrices it follows that (L.4) can be written

.

R (&) ] @Y (Re,ite) w0 “ Q% (e, Re) BY]

(k.5)

-2

Similarly if we consider ¥ inside the inscribed sphere of SL

(with ceater in G' ), we Tind

“-)(r 3 {wsm [(V Ty

; , gl
"‘IM{/ f’")‘é? hp;iv!,,f.")f};,/*i'

i T2
"M 5 }!\?{) o f }E:‘F ¢

“ i 6;

"’.l Y
i st h‘ (L? I{fw (i»‘««(.*~—cz.,f,;\eu,'”}

i
5J
~Ir wn(ﬁfa’c“f-”cc )‘C' !{?ew (P’”)Az ’Jj

fow =l (L.6)

As before this can bz simplified to

.
Lor (=1~ (4.7)
In ¢eriving these equations we have nade the same geometrical

asumptions whieh were necessery Tor (2.7) to held. 'fhe problem
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of solving the system (4.5) and (4.7) increases rapidly with increasing N,
However, it can be secen directly that the solution can alwvays te expressed
in terms of R(h: U-) TE’L} T”i and QN‘.(I!"}WQ}(?; where of course

T o =-Q%(Re, re) QiIv,Re) | andt T*'=-Q"“(ke, R)Q“ (1, Re"
QO‘: and Q”z are the Q matrices for surface L corresponding

to the Dirichlet's and Neumann's problem respectively. If instead of

the field, the derivative of the field would have been prescribed we

let Efk""’ g end interchange the prefixes NK ana DK  in the

final result. For N"‘? we get

o3 'v( k) yra vl M1
f = (&, ) [T -~T _)0 (Iv,fxe)ﬁ/
(4.8)
i
There are in principle two methods of determining O . The first

: ol v
is by operating with the functionalf Sq—f (¥) on Eq. (k.1). Tae
"‘3
second method i3 to operate with the functional )\U‘ﬂ)[c&vS (V »}!H(

on BEq. (4.1). The second method gives 4

” 93, . = T 4 > . =3,
o K " _gl [O (Ew., Aa)]ﬁm )\( mlljdfs ‘ LH{" Uf) W RJ‘:"‘ k{{w[ﬁ"} (4.9)

. " y .ﬁq .
Using (4.9) the factor Q ([,V, I\’Q E«,, cen be vritten

Z fT"""’] }\(w}ja ‘. ., RGRAL @, (F),

Kext we treat the full probl;:-::‘». with l’f passive and l‘V’- active
. JB
bodies plus a distent source. ILet us make the definition Cd'— Q (fl,x\,);
“IP&.,‘_. @‘., :&‘:;6. . >
and {v. MQ ( r,,e,;_}‘é:, . It 1c easy to see that this leads to a

system of equations which we get just by "adding together" (3.15) and

(h.5), (3.1h4) ana (L.7)

e Stk - ),. YYHE i Tl
‘LMWK’. ﬁ)T( "i,.a -#Z!Z le [T cC+T oLJ
Z'G:‘e["‘f ! l f?/[ﬁ"
L E T S4B DU S J
RUtGle=a| —2 Ul-aedl)TYj1)a’+
lete ¢ =‘;j’ ::f,;,f;;

S e P ) i AL e 3 S l"

- , i S U S J

+ &% - 5 TH-2, 4@ ) TS e Tl ]
/ I R A ;
* T S B 4 j
a2k EFERALN Leaw =1Ly (it)
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In this system < d o are unknowns which we want to eliminate
-.’
in order to expres '{‘ in terms of & | the coefficients of the

.

) > L s H ;;3*4 - ¢
source field, znd & A, (Ini?a)n—? where B¢ are the coefficients
in the expansion of the surface field on body number & . We define

- .
new matrices and vectors of dimension A , with the indices L and J

-
- =

>
in (4.10) and (k.11) as Tollows: @ all components equal to @& 9

>, .
the first K conponents equal to & for tE K and the other A=K
¢ ;

'9{ A
equal to € for K<tEN | Z with the first K components
equal to zerovectors and the other A= components equal to € for

K<< N,

Thus ve get

[=IR1ITI§ «[RI[T*] & i 0
[kIE ={-[FULTHR T+ $0-[FITRE

It is easy to get the formal cclution

[=LRLTI{ - LapLTp L rRE] &
Aaes £ v .y N2 -7 e £ ey} ;3,?
“[R1 4-LTCIE L Ire]-[T¥]¢ & (

From (4.13) we can draw several conclusions. Firztiy the problem

b o
=
w

is, as expected, a superposition of two problems: C(ne with a primary
ield and all bodies passive and the cother that with K passive and
- K active todies. The bodies with prescribed Tields have a
T matrix resp depending upon whether the field or the
ield vas preseribed.  Seconily every body willh pre-
scribeé field gives rise to & field as in (...4) which is "propagated"
by the U matrices between a1l A4/ bodies in all possible combinations.
Thirdly we con see thot the first inverse which, as menticried betfore,
can be calculated by the methods given in Ref. FBl slso gives us a

-
possibility to got i cecond inverse direcctly. We remark that these

resulés can be extended aisn to the g¢tationary scehiering problem

=

ol & scalar or a vector field.
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V. Discussion and numerical applications

The formulas given in the previous sections represent exact solutions.
However, in very few cases is it possible to solve the various inte-

grals analytically and perform the matrix multiplications and inversicrnz

algebraically. For some simple bodies of this kind there are analyt:

results available with which the T matrix formalism can be comparéd.

The T matrix for a sphere is diagonal and the elenents can be calculsated
exactly. This of course gives the same result as the standard treaimert
in spherical coordinates. Van Bladel [11] calculates the field inside
and outside a dielectric spheroid in a homogeneous clectric field
(obscrve a missing factor % in egs. (3.60) &nd (3.61)). The co-
efficients Oql and G{L are propertional to twe T metrixelements. This
exact result can also be uvsed Tor the case of homogeneous Dirichlet's

and Neumann's boundary condition. In Ref. [121 the field iuside a

in a wiiform static electric field Is caleulated

~
Y

dielectric spherol

by means of a method slightly difrersul Trom the present one.

In order tc get analytical resuits oue is mostly forced to treat sur-—

[

faces which are coordinate surfaces of a coordinate syshtem in which
Laplace's equatioa 1s separable. For surfaces not too much different
frem a coordinate surface one can apply perturbstion theory similar

toc that in Ref.[:13] . The problem with two spherical bodies can be

treated analytically in bispherical coordingies EThT . Purther, by
applying the transformation properties of the separable solutions one

can, at least in principle, treat the problem with several bodies bounded

by coordinate surfaccs. However, because of the very limited knowledge

of the translaticon properties of these solutions, other than the spheri

(i)
)
s
fm

oncs, one mostly has to transform te spherical solutions, make use cof

their translation properties, and then traanslate back again.
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Fully numerical treatments, by discretization, of the static field
problem can be fcound e.g. in Refs. [}ﬁ} s ljﬁ] and [Ti] . The T matrix
method lies somewhere in the middle between the two extremes of a fully
analytic and fully numeric solution. In order to obtain numerical
results, we consider the truncated solutions. The convérgence properties
of these solutions depend on a complicated interplay between such para-
meters as the dimension of the matrices, the geometrical dimensions of
the varicus bodies and their separations, the method of numerical inte-
gration and the number of intervals used, the specific choice of origin,
the curvature of the surface etc. An in-depth study of all the various
gquestions of the dependences of the solutions on these properties lies
outside the scope of the present article. Here we shall only use the
elementary stability tests consisting of an increase in the dimension

and the number of intervals.

There are several other tests of the computer preograms which can be
performed. The expressions for the @ matrices can be tested numerically
for instance ageinst the relations (2.20) and (2.21) which we recall,

are valid for very general surfaces. The T and Q matrices for spherically
symmetric bodies has to be diagonal, which also is easy to check.
Furthermore, the T matrix can be calculated for different choices of

origin. The translation matrices can then e used to transform the

T matrices to the same origin and check whether they coincige.

[N

As an illustration of the T matrix formalism develcoped in this paper
we will give some numerical values for T matrix elements (Fig. T)

corresponding to different rotational symmetric configurations. The

-axis is taken as the axis of rotational symmetry and the objects are

~N

syrmetrically situated or it. As primary field we take the constant

[ . .
homogenocons vector field [E = [(sin¢er | O | cos®? ). This field con
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be expressed by [E= -~V where l’/ Z @y Re l,Un
)
(75 .__fi
t a oS 5 symmetrio
with G.e,” \3 s "ﬂ’ 201 . For rotational symmetric

configurations this is general enough. With our choice of rotation
axis the T matrices for rotational symmetric configurations are

diagonal in the {J] and m indices. It is sufficient to consider

— n Cf‘ :

T matrices of the type T = {(m d ‘ ’

Umn,aT'm'n"™ ot U mm

which involve

1
(e = 4 (e emi a7
Q ZPQ, Re) 0ot 2 | {2n+1)(nem)! (n'vm)! ]

UTmn, T mh

W W" B O
fde Sin e Z{_:HLZ JZ : j‘f) CCase) gr,n'

-

X é);; _5-:11_& (( }"-4-’7) CC?“‘G p (tose)~(n-~ m+7)p"+1 (fose‘))J

L
’ P (¢ose) (7 o !TU'O) O(‘U‘cr’ Oﬂmm'

The integral is zero at the endpointa of the integration interval.

From the general expressions given in the appendix it follows that

A
the trenslation matrices for translations ¥ . Z are
/
() A m+it (?.H):' I /E
] (taz)= ”7} (@net)) = 7y
T, Tm's (207)! (2(n-p)!

' [ 4

‘4 H
n n n-n AN il
* (m -m 0 ) @ (i 7)

for O0sh<h , othervise zerc

Q-U-’ JO"Q O(;‘Hml

X
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A + 2 : .’
(tad)= (-9 (2pes) |—2n) :

T wn,r'mn’ (2n+9)! (2(n™-n))!

n on’ n'—n) h'-n,, h=n

x(l’ﬂ -m 0 J @ (i” : C/'U'IT‘ Cf)cre o(.l»'nm'

for osnsn’ , otherwise zero
1
2

R My (Z(H-I"n’}-f-'l)./
taz)=[1 [241+1
U‘MH,U"m’n’{ az)= 1) )(Zn—&'?/‘.’(zn'-r‘?).'

2

'
n nl I)-H’i’ ~Rh~n -1 n+h
g Batha T e

T %0e “mwm’

for all hZ0, h 20

The expansion coefficients fh for the secondsry Tield with the source

field shove are simply

= |
A .
Ice‘!h i \ 3 Teﬁh,eﬂ Senty

First we treat two prolate spheroids with semiaxes a = 0.} and b = 0.25
with Dirichlet's and respectively Neumain's homogeneous boundrary
conditicn case A resp. case B in Fig. 7. As the second case, called
case C in Tig. 7, we treat a permeable prolate spheroid with semiaxes
a=0.8smdb =05 for 9 =0, = b‘é,ﬁ‘-? , Mo=2. mivdly

we treat the above permecble spherold now contalning a spheroid with
Dirichlet's boundary condition. This case is called case D in Fig. 7
Finally we trest the two sphcroids in case A ana B. The spheroid with
Leumsnn's bpoundary condition is situaved at a distance ¢=0.5 from origin

on the positive z-axis and the spheroid with Dirichlet's bow: ‘ary con-

dition is situated &b a dictunce ¢ from origin on the negative z—-axis.
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This is called case E in Fig. 7. As pointed out before these T matriy
elements are sufficient for the calculation of the secondary field gdue
to any scalar field ¢) which correspond to a homogeneous vector field
[F  given by n==-v¢ . We note the following features of the con-
vergence properties., The T matrizx elements appear to décréasé‘slowly
but the basis functions decrease very fast, compensating for this, sat
least for large distences. However, the convergence of the field
expansion near the radius of convergence (i.e. the circumscribing

sphere) was very slow. The matrix Q@ (Lv, R& ) is unbounded as one

of the indices increases which has the effect that the numerical accuracy

in T might even be diminished, unless the numerical accuracy in Q(F{a,}’{'e)
and.CQ(I¥]f€€) is increased, when the dimension is increased. The
matris(Q(Ir,Ir) which is used when the bodies aré layered, is un-—
bounded in two indices. This unboundednes will be compensated by a
multiplication by an inner 7 nmatrix but here the requirement of better
numerical accuracy when the dimension is increased is more pronounced.

By the same programs we could equally well have made morc succesive

inclusions for surfaces other than spheroids. The two body configuration

could also consist of more complicated bodies of this kind.
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Appendix:

Translation matrices for spherical solutions to the scalar Laplace

equation in two and three dimensions

The basis functions and their translation properties play an essential
role in our treatment of the static many body problem and therefore we
shall give some relationc which are useful in this context. The two
and three dimensional cases are structurally the same. All relations
can be derived from Ref. ES] by a limit process [10](cf. also Refs. [18]
and [19] ). We first state the results for the three-dimensional case

[181, [19] . Consider two linearly independent solutions to

VZ{I/T-O » (A 1)

which we choose as

Re\;zntv) =Re. \T)iey [r) },/z ﬁp (Cgsg){g?:::g;} (A 2)

o Iy = C OS5 i
I;,()j E—‘ (Iu{ ('l-*)-:y""- T 1P (Lose)g Cfg (A 3)

e? ¥kt Sin m
Osmﬂ (f

where

v (2n+1) [1=im)!
Z/MP? Y1 (n+m)! £o=7/£m=2 {OPM':FO (A L)
et (¥, 0, (,)7) {aig,t;/) and (I’?, ), 5#)) te the spherical

coordinates of Y a- and f‘?.

-+ _ -, =
, respectively, where r=a+Rk
By multiplying Eq. (A 1), (A 3) and (A 4) of Ref. [5] vith appropriate

factors of [,{ (the wavevector K ) and then taking the limit ’.f_’ 0

we get

F‘?QL’J(_Y) Z (Q}/‘\e(jl/ (r{") ell a and B (a5)




ot ond e e e e el el we wm

-

a3 3 (0 (ol fed Cod Coeed

s |

Ir (=20 (&) Rey, (R) for @R g

) =
I?WH(?)T-; R:z,(a) Lr HU”,(/?) 7’-0;— a< R

and

(A7)

(0, @)=t =t m'[(—l) )L

CI'm'i(r

xcos(m-mf)til/ -r‘-(—l) 7;"!_)",”, (a,p) cos(mem!) L,UJ

’

T'"ﬂ,m’n’(a" 7) :

( Q) l)m }Emzéw' [(‘UU-HH

ﬁcrmn aTmn’

O :
St s T, S Pl TR

Mt - <> = (s), » \
wn R2)=RT@), RUCH=T@, PLDH=R"@ «o

!
e

" A , n-m'] (Zm-?).’(n-h’-m-é-mI).' 1
a p}={~1 2+l L
T“hn, m'n'( '7} \ ) [( ) (n's9)! ('2(ne;:’))_’(h—l'i’i—m-i"ﬁ').’j

n K n*-n') n-u'_mem’
cl (R Ce [ A P ' ((astz)

-k
for Oﬂ_’:'n’f_-‘:k) , otherwicse zero (410)
g
/5
T neo' (2(!’2+H Y+ nen'- mhm}’
] - (a,,/z):( ) (._n-:-l) 3
pn, 'y’ Sn+r)! (20 ) (n4n'em-m)! )
)

L 4t
[/ n h Vi-eh il
w“flm =1 Pi-pm

I
X
km ~m' m'-m/ G Pm-nt (“”’Z,)

for all mrg, N2 O (A11)
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'
L] nem'] (24 (2n) (n=n=m+m')! "
Tmn,m’n‘ (QI’Z> =("U {(2}’1).' (2(14%&1))!(;1‘—-n+m-m')f]

n n' n'
n-u n'-n m-m!
lm -m' m'-m| @ P":_n (5032)

for —OS =R , otherwise zero (a12)

t:jK} : . e
Here(bmn 1s the usual 3-J symbol [20] .
By repeated application of (A 5)-(A 7) we get (cf. Eq. (A 5), (& 6)

nd (A 9) of Ret. [ 5] )

R(r}(&,)/?(lf}(gr):R(V)( ) all a cnd b (213)

(s), >

5 (S)
R( )(a R (b)"’“ ’*) all a and b (A1h)

RN ) T(h) = T@)=T(h) R(Z) for ach (s

™ -3
where C= a4+ b

From (A13) and (A14) we get

(r), - (v, "1
R {‘“’-)z';? (C!./ all a (A16)
(s)
( a) ;\ ((A’l) G.LL GL (A7)

>y, .
The explicit expressions for the ﬂ, (C"j Cf-) .Y 9 tve

!
—( )=I-
Rq.mﬁlg,/m,ﬂ/( ) . /) Trf?ﬂ ,m,”, ) all a (218)
(s) - n-n' {8 B
- o —-I s ’ .
Ru'mw"m‘f’( “)= ) RG":MI?,Q‘%;"”’(& all @ (9
nen'

T Sl

(& I-cre— a>0 (100)
\l’im,*'g,,“z : ﬁ‘m,(,u,
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and the relstion needed for consistency (cf. section III) becomes

(5) " >\ tn) (V)

-3
& &) all A1
T""'":Q'mn{ )‘(n/) U'Vnn,tr'm‘n‘ ( ) a ( )

1
where as before )\(h) Sl e——

2n+1

Finally, we have in the same way

(2)= 2l L
o (a N (=) for aso(n2)
Tmn, Cmn I\(n) Twmn, T m'n’

Consider rext the two-dimensional case and consider the solutions to

(A 1), which we choose as

?_7-1 SLHH?

£y —n-t JCosng
= P S innep for nso

RPA}/U’) F’eky“ (F)= V_E_an 2“3" } all v (a23)

Ll 27
Ir%(&")EZrk,ve (¥)=
{}” -—— Llnp ‘fu‘e -{-or n=0o (a2h)
\EF;

- —
Let (Y 3") ;(Gﬁ,(f’) and (1’?, 40) be the polar coordinates ot ¥ , G

“3n . e -4 : . -
and R, respectively, and let r= a*+R . By miltiplying
Eq. (A11), (A13) and (A1) of Ref. [b] with appropriate factors of K
and then taking the limit K=+0 we get

Re y, (F)= 2. Rn Re.tyn,(,f?) all a and R (po5)
|

h!

Lr L;/”(ﬁ)::g U',m,(&”’) Re. W, U{”) for a>R (£26)

/i (¥)=2. R(s} /Ef}l'r‘/ (':?”) Llov a< R
SR at hnt o G r e

with
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| h-n'
() 7y En n.a

Ehr h’! (n"'n,“

cos(n —“')"V (1_ J‘Cro cr..,'o )

nl, T
(r B F n! Q" M0T
) = Sénln-u’) (1~ &,
Rq_nlu_ln,(a') Enl H’!(n‘*{,).l ‘7V( ago nd)/

T+

t .
for O<h<n » otherwise zero. (A28)

T o(cl’)=-zu.a. i

go, g’

andl for nw+o0 or n'=o0

'
T ({j’)-:,.__a_.— & N+T (naen'a)! a_-n-h'r
Th, T r VEu Er (n-1)! n'!

*c.os(h-m')g'/ (T-dqq-a 0/‘7,10)(7‘0(;,.0 J‘n"a)

2 [ "I(m—n'-?).’ ~h-n'

C‘. "‘"—;"_' .\(
Th,an' T VELE (=

“Seatnen) (1- g 4, ) (1= oy Iy ), T

for all Red . n'zo0 and by definiticn (-1)! ¥ 1 (A29)
]
() RO n=f o (p'ea)! n'-n
(Q‘}:::x — (_“") - : L X
T, n & n (n=1)! (n'-n)!

Yoo e - t - { a N ,"
B RStV A Ll“‘cfcr.a ono)

RC.S) ({f)-—‘(g_h: (_{)nLH+(E (m'_m?)-.l_—_— Q-n-'__ﬂk

ﬁ'n,(;f‘fn' Eu (n—~1)i (.“"“n)f

“Sin(u-ny (1-dpo o, ) T

for 0= N=<np , othervise zero and by definition (-1)! = 1. (A30)



By repeated application of (A25)-(A27) we get

R Q)R (b) R (C.) all a and b
R(S) d m(o) =R () all c aud b
()

R)ITB)=T(2)=T(B)R(2) tor a=<b
W})B}"e C.= cc.-[-b

From (A31) and (A32) we get

R"y2y= ") all a
e I

The explicit expressicas for the translation matrices give

() h3t (”) -

R q‘s—z,a"n' @)= U) R Tu,T'n (a) all o
($) Sy o n-4' (s) o

R Th,o'n’ )= ED U‘ma'};'[a) SoL

. nh+n' +
(/—i;‘ l*&)ﬁ(“?} q—u_nlq_,n,(&) {-cr a0

na'n'

and for consistency

¢s) . ALK 2
R a_;}?;cmla) N Ra:no’n'( % all o
j’/zm h>e
vhere as before )\LH) = L ,/2 N =
Finally
Atn)
e L b
O] =5 = -~ Q-
Cz"r?',(l‘n( ) A(w') Q;‘H,U"H’( ) -for i
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(A31)

(A32)

(A33)

(A3L)

(A35)

(A36)

(A37)

(A38)

(439)

(ALO)
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Figure captions

Fig. 1 Geometry and notations for a twolayered body.

3 A : . 3
Fig. 2 Outside the spheres are different expansions of in irreguis
functions valid. By successive .transformations it is possible
to obtain (different) expensions valid everywhere outside the convex pzrt
of Siw
1

: . . . S, o I
Fig. 3 Outside the sphere about 0 1s an expansion of in irreguisar
functions valid. Inside the sphere about 0. is an expensicn of
Yy in regular functions valid. By successive transformations it is
possible to obtain (different) expansions valid everywhere outside the
concave part of S1.
Fig. 4 Geometry and notstions for two twolayered bodies.
Fig. 5 Geometry and notuations for two active bodies.

Fig. 5 Geometries for vhich the T matrix formalism is applicable.

Fig. 7 Table of T matrix elements for different rotational symmetric
configurations where the z—axis is rotation axis.
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