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1. 

Abstract 

A T-matrix formalism is used to calculate the backscattering cross 

section for a dielectric shell bounded by two spherical surfaces. The cross 

section is studied as a function of the displacement of the centre of the 

inner sphere from the centre of the outer sphere and as a function of the 

angle to the runs of rotational symmetry. The wave length considered is 

chosen equal to the radius of the outer sphere and the calculations are.per-

formed for the values 0.5 and 0.8 of the ratio between . the radii of the inner 

and outer spheres. The necessary fornrulas from the T-matrix formulation as 

developed by P.C. Waterman and later extended by B. Peterson and S. Strom 

are reviewed. 
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I. Introduction 

In Refs. [1] and[2Jwaterm~ has given a T-matrix description of 

acoustic and electromagnetic scattering from a single homogeneou:s scatterer. 

The boundary conditions on the scatterer can be of a fairly general nature 

and the surface of the scatterer .. has to satisfy certain fairly weak geometrical 

condtions. Monochromatic waves are considered and the T-matrix refers to ex-

pans ions in spherical wave solutions of Helmholtz' s equation. This T-matrix 

formulation has subs~quently been extended to the case of an arbitrary number 

.of homogeneous scatterers [3], [ ~ and an arbitrary number of layered scatte­

rers [5] ,. [6]. The extension is v.alid under fairly weak conditions on the 

configuration of the scatterers. 

The expansions of the incoming and scattered fields in spherical wave 

functions, the corresponding T-matrix and the associated Q-matrix for a 

surface of a single homogeneous scatterer [2] are presented in section II 

together with ~he extension. to multilayered scatterers with constant proper­

ties for the region .between the closed surfaces l6J as well as configurations 

of two such scatterers. In this section also a multiple scattering picture 

and some helpful relations a.re given. A numerical example of a dielectric 

shell bounded by two spherical surfaces and of the size two times the wave-

length is given in section III. Some remarks on the advantages and generality 

of th~ T-matriA formulation are given in section IV. Only the lossless case 

will be treated in this paper. 
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II. Basic results from the T-matrix formulation 

~hroughout this paper the T-matrices considered will refer to spheri-

cal monochromatic waves with the factor exp(-iwt) supressed. The fundamen­

tal expansion functions ~ are · the outgoing spherical vector wave solutions 

to 

( 2. 1) 

explicitly given by: 

(2.2) 

where T = 1,2, a - e,o ("even" or "odd"), n::: 1_,2 ,3, "' . . . ' m = O, 1,2,3, .. . n, 

a.nd 

v _ Eml'ln+ 1)(n-rn)! 
Otnn- u { 

1 ri n n+ 1)(n+m)! 
h(l)(t;r) is a spherical Hankel-function mid 

n 

c = 1 E = 2 when m :f: 0 ( 2 • 3) c.o ' m 

where P: is an associated Legendre function [1]. With the abb:eviated index 

notation the incoming respectively scattered field are represente~ as: 

(2.4) 
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~ ~ 

where Rei!i stands for the r e a,ul a.r.. part of l)i i.e. the expression {2.2) with n ~ n 

h( 1 )(kr) replaced by j (kr), a spherical Bessel function. 'fhe solution of 
n n 

the problem is given by the T-matrix satisfying 

-- (2.6) 

In Ref. [ 2] it is shown that the T-matrix for - ~ single homogeneous scatterer 

is of the form 

_1 

Q( r(e_, ~e_) Qlo~r;, ~e) (2.7) 

where Q(Re,Re) and Q{Out, Re) are matrices which are functions of the surface 

S of thescatte rer and of the electric and magnetic properties of the scatterer. 

In the lc;"ss less case the T-matrix itself is well suited for numerical tests 

because it h::i.s to satisfy the following two relations 

Tt T = ~R eo..lpart of 

Tt=T 
T {2. 8) 

(2r9) 

where t stands for hermi te conjugation and t for transposition . 'Ii.1e lossle!~:> 

ca~e is described in Ref. [2] and carried through numerically in Rcfs. [s] 
and [9] by means of a procedure in_ which (2.8) and· (2.9) are consi9.ered ~.s 

subsidiary conditions~ the -explicit inversion of the Q-matrix being avoided 

by forming the unitary .equivalent. The fundamental matrix Q( for 

a surface S as in Fig. 1 is given by: 

(2.10) 
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where k 
1

, µ 
1 

and k
2

, µ
2 

are the wave vector a."ld magnetic permeability out­

~ 

side respectively inside the sUr-face and ds is the outward pointing normal 

surface element. 

Corresponding expressions Q( Out, Re), Q( Out, Out) and Q(Re, Re) ar•e for­

med easily noting that the first argument act on the functions ~n(k 1~) and 

-+ -+ 
the second on functions ~n(k2r). With this slightly more general defini-

tion of the Q-matrix than that given in Ref. -(2] it is possible to cover most 

scattering configurations with constant material properties between surfaces, 

including of course the case of infinitely conducting surfaces. 1he i nfinite-

l y conducti ng case i s obtained by p.utting J.J{
2 

= J.J { 1 (k
1
=k2 ) and then taking 

lt.WJ /J2 Q. 
Ei~o Pt • 

The T-matrix formalism is by no me ans restricted to homogeneous single 

scatterer. The most direct extension is to the multila.yered scatterer, Fig. 2. 

The T-matrix T12 for the whole obje~t is given by the Q-matrices Q1 associa­

ted with the outer surface s
1 

and the T-matrix T2 for the rest of the object 

inside surface s2 , taking into account that T2 is the T-matrix in a medium 

characterized by _e:
2 

an~ µ
2 

[6]. 

An iterative procedure for a multila.yered scatterer starts by c~culating 

th~ T-matrix for the innermost surface and the "different Q-matrice~ for the 

next surface. Then the T-matrix for the two inner surfaces is constructed as 

in (2.11). The procedlire is continued to the outermost surface. If the inner-

most surface is infinitely c0nducting the corresponding T-matrix is performed 

as was pointed out above. The T-matrix for the homogeneous case is, of 

. 2. () () . course, reached by putting T =O in 2. 11 . The formula 2. 11 can be rewr1 tten 

as 
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(2.12) 

where 

Tl~ (2.13) 

is the T-matrix of a homogeneous scatterer bounded by the surface s
1 

and 

media c·onstants El, lJ 
1 

and ~, µ 2 outside respectively inside the surface. 

The terms obtained by a formal expansion of the inverse in (2.12) can be 

interpreted as various multiple scattering contributions to the total 

T-matrix [6]. In such an expansion there occ~rr, besides the individual 

T(i) matrices, Q
1 matrices which, in accordance with the form of T(1), 

can be associated with a passage of a wave going out through s
1

• Thus 

( 1 )-1 f . . . . a Q actor is associated with a paesuge in through s
1 

and a factor 

( . . . 1 ) ( 1 )-1 Q1 . . with the appropriate arguments of the Q :s Q · with a reflection 

at the inside of s
1

• The first few terms in the expansion of (2.12) can be 

depicted as in Fig·. 3 and one easi::.y sees th~t in general one has exactly 

the terms expected from a multiple scattering:picture. 

The extension of the results above t.o the case of several multileyered 

scatterers is given in detail in Ref. [6] ( cf_. also [ 4]). An essential point 

in this extension is the use of the translation properties of the different 

. T . . . 12 f . ff . d wave functions. he total trans1tion matrix T or two di erent multilayere . 

scatterers situated at ! 1 respectively ! 2 with the corresponding T-matrices 

T( 1) respectively T(2) (see Fig. 4) is given by [6], [4]: 
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. [1+ f[(-lt1+~.~)T(2)R(~i-aifl R(-a1)+ 

-1 

+R(;z) Tc<J[1 -\f(-~~+£1)Tl~\fl-O::+~)Tl2fl · 

(2.14) 

The difference between R and a is that o has a Hankel function ~ 1) (kc) whr;re 

R 'has a Bessel function j 
1
(kc). Note that 11Re;:.lpart of a" = R [ 4]. Formula 

I+ + I I/ (2. 14) is constructed under the assumution that .a . -a. >r. for 1,2 
• 1 J J . 

= it j = 

I/ + = 1,2 where r. is the radius from a. to the surface S. (cf. Fig. 
J . J J 

4) . 

The terms obtained by~ formal expansion of the inverses in (2.14) can 

be interpreted as various multiple scattering contributions of the total 

T-matrix, [4] see Fig. 5, In this way it is also seen-that the two terms 

in (2.14) correspond to waves scattered in all possible ways between the 

scatterers and the last time scattered by scatterer number 1 respectively 
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scatterer number 2. It is a.lso apparent that if T(2) -+ 0, then 

12 -+ -+ 
T -+ R(a

1
) T(1) R(-a

1
) and correspondingly for the case T(1)-+ 0. 

L... 
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III. A numerical app lication to a dielectric shell 

As an application of the ·T-matrix formalism described in the previous 

section the backscattering cross section for a layered dielectric object 

with two spherical surfaces is calculated. (We are indebted to Dr. K. Ost­

berg for the suggestion to consider this case; cf. Ref. [ 11] for a dis­

cussion of the corresponding concentric dielectric shell.) The radius of 

the outer and inner sphere are denoted by b and a respectively. The greater 

sphere has its centre at the origin a.~d the smaller sphere has its centre 

at c~. The material constants are: outside the greater sphere µ
1

, £ 
1

, bet­

ween spheres µ
2

, £ 2 , and inside smaller sphere µ
3

, £ 
3

. The materials are 

such that µ 1 ~µ2=µ3 , k2=2k 1=2K
3

. In Figs. 6, 7, 8 and 9 the no~mali sed cross 

sect i on = lim 41T r2 I ~s [ 2 
r 1Tb2 I Eil 2 

is given for backscattering as a function of the 

angle between the incoming wave vector and the .POSi tive z-axis. The incoming 

wave is a plane wave with the electric vector orthogonal to the z-axis. The 

product k 1 b is equal to 21T in the diagrams, tile ratio c/b is chosen as a 

parameter, and the ratio a/bis 0.5 in Figs. 6.7 ~nd 0.8 in Figs. 8.9. The 

calculations are made using formula (2. 11) and the T-matrix for the inner 

sphere is transformed to the origin by means of the·R-matrix in (2.15) , As 

a check of the numerical approximations the relations (2.8) and (2.9) were 

tested and compared with the maximal element of T (see Fig. 10) for 

azimut index one. It might be noted that the program for this c~se with 

the whole T-matrix ( 15 x 28
2 

elements) fill UiJ all of a IBM 360 ma.~hine. The 

progrrun was run in two steps. First the T-matrices were calculated for d~ffe-

rent ratios c/b, which were stored on a ta.pe
1 
then the differential cross sec-

tions were calculated reading the T-matrices from the tape. Of course the 

programs could have been made smaller by not taking all azimnt indices to-

gether, but this could not have .been used to calculate matrices with greater 

dimension. This is so because the translation matrices were calculated in such 

a way that all the needed 3-j symbols were calculated explicitly. This pro-
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cedure contains big fact.orials which had to be lower than 56! because of 

the machine. A recurrence relation for the product of two 3-j symbols, 

which will lower the computational time, is used in· Ref. [ 10]. Presumably 

this procedure also would permit an easier handling of the 3-j symbols in 

the present case. 

The curves in Figs. 6 and 7 show more sturctilre than those of Figs. 8 

and 9 as might be expected sine~ there is room for more wavelengths between 

the surfaces in the case a/b = 0.5. In Fig. 8 and 9 the nunima become deeper 

and the maxima become higher for increasing c. From Fig. 10 it can be seen 

that the truncation error is largest for the inner T-matrix in the .case 

a/b = 0.8. As explained above we were not able to increase the dimension 

of this T-matrix. However, as expected_. th_ere will be a certain shielding 

from the dielectric shell which will diminish this error which doesn't seem 

to effect the total T-matrices as seen in Fig. 10. The tests for the T­

matrices in the case of maximal translation (c = b - a) are as good as could 

be expected. It is to be noted that in the case of a/b = 0.5 the correspond­

ing maximal 11effective 11 translation distance (taking the value of the di­

electric constant into a.ccount) is very big and the dimension needed in­

c.reases with increasing translation. 
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IV. Concluding remarks 

In scattering problems one usually first calculates -the in_duced sur-

face fields due to the incoming field, then out of the surface field, the 

scattered field is calculated. The advantage of the T-matrix formalism· . 

[1], [2] is that it allows one to jump over the step of calculating the 

surface fields . Instead the surface fields are expanded in spherical func-

tions and then the unknown expansion coefficients are eliminated by means 

of the two equa~ions for the integral representation of the field inside and 

outside the scatterer [1], [2]. 

One great advantage with the T-matrix formulation is that once the 

T-matrix is calculated, the scattere.d field, outside the smallest sphere 

including the scatterers and with centre at origin, can be calculated for 

ev e ry incoming wa ve (not necessarily a plane wave) . In Refs. [5 J and [6] 
and in the above it has been assumed that the -source is situated outside the 

scatterers but this is not necessary. In fact, one could take the most 

general configuration of multilayered scatterers and :put a surface outside 

the whole configuration including the source and immerse this in a medium 

including other multilayered scatterers and so on. The T-matrix i tseli' also . 

contains information about the numerical accuracy and consistency, because 

of the relations (2.8) and (2.9), which can be of great help esT~cially for 

fully dielectric multilayered scatterers. 

Programs for rotational symmetric infinitely conducting scatterers 

have been given by Waterman and McCarthy in Refs; [ 8] and [9 J . Pr_ogra.ms for 

los sless rotationall y" symmetric multilayered scatterers can be developed 

by moderate extensions - of w~terman's programs. Translati on matrices for 

t n arid Ret n can .be found in Ref. [ 4] where also the formalism for an arbi t-
= 

rary number of scatterers is described in greater detail. 

. . + + 
The T-matrix formulation based Qn the functions 1jJ and RelJi of course 

n n 

has the di sadvantage of a slow rate of convergence for objects of size more 

t h an two to three time s the wavelength. However, the general structure of 
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most of the formulas are valid for large classes of complete systems of 

expansion functions, i.e. in particular also for the case of functions 

possessing the opposite convergence property. (i.e~ faster convergence 

· for greater ratio objectsize/wavelength.) This aspect of the formalism 

deserves much further study . 

..... 
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Fig ure cautions 

Fig. 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Notations . for a homogenous scatterer. 

Notations for a multi layered scatterer. 

Multiple scattering interpretation of Eq. (3.2). 

Geometrical configuration for two scatterers. 

Multiple scattering interpretation of Eq. (3.4). 

Normalized differential backscattering cross section for a 

dielectric sphere, with k
2 

= 2k
1 

and radius b, enclosing a .di­

electric sphere of radius a=b/2, with k
3

=k
1 

and whose center is 

displaced the amoiint c. along the positive z axis. All relative . 

magnetic index (µ) ere equal to one. The electric vector of the 

incoming field is orthogonal to the z-axis and the cross section 

is given for k
1
b=21l'.as a function of the anglf; between the 

positive z-axis and the incoming wave vector for c/b=O :--, 

c/b=0.1:- - -, c/b=0.2:-·-·-, c/b=0.3 

Same as J.n Fig. 6 but now with c/b=O. 4: - ·-· c /b=O . 5 : - · - · - · · 

Same as in Fig. 6 but now with a/b=O. 8 and c/b=O :--; c/b=O. 05 :-

c/b=O. 10 :-· - • -. 

c 
Sa.me. as in Fig. 8 but now with b-0.15 : -· -

c --c:o 20 .. -·-·-·-b • • • 

Result of numerical tests for T-matrices. 

Numerical test for T-matrices. 
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