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Abstract

A T-matrix formalism is used to calculate the backscattering cross
section for a dielectric shell bounded by two spherical surfaces. The cross
section is studied as a function of the displacement of the centre of thé
inner sphere from the centre of the outer sphere and as a function of the
angle to the axis of rotational symmetry. The wave length considered is
chosen egual to the radius of the outer sphere and the calculations are- per—
formed for the values 0.5 and 0.8 of the ratio between the radii of the inner
and outer spheres. The necessary formulas from the T-matrix formulation as
developed by P.C. Waterman and later extended by B, Peterson and S. Strom

are reviewed.



I. Introduction

In Refs. [ﬂ and.[2J-Watermén has given a T-matrix description of
acoustic and electromagnetic scattering from a single homogeneous scatterer.
The boundary conditions on the scatterer can be of a fairly general nature
and the surface of the scatterer has to satisfy certain fairly weak geometrical
condtions. Monochromatic waves are considered and the T-matrix refers to ex—
pansions in spherical wave solutions of Helmholtz's equation. This T-matrix
formulation has subsequently been extended to the case of an arbitrary number
-of homogeneous scatterers [3], [é} and an arbitrary number of layered scatte-
rers [ﬂ ” Bﬂ. The extension is valid under fairly weak conditions on the
configuration of the scatterers.

The expansions of the incoming and scattered fields in spherical wave
functions, the corresponding T-matrix and the associated Q-matrix for a
surface of a éingle homogeneous scatterer [2] are presented in section IT
together with the extension. to multilayered scatterers with constant proper-—
ties for tﬁe region between the closed surfaces [ﬁ] as well as configurations
of two such scatterers. In this section also a multiple scattering picture
and some helpful relations are given. A numerical example of a dielectric
shell bounded by two spherical surfaces and of the size two times the wave-—
length is given in section III. Some remarks on the advantages and generality
of the T-matrix formulation are given in section IV. Only the lossless case

will be treatéd in this paper.



II. Basic results from the T-matrix formulation

Throughout this paper the T-matrices considered will refer to spheri-
cal monochromatic waves with the factor exp(-iwt) supressed. The fundamen-—
tal expansion functions Y are the outgoing spherical vector wave solutions

(V+ kz)(%?;—’_- 0 -
explicitly given Doy:
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where T = 1,2, ¢ = e,o ("even" or "odd"), n = 1,2,3, ..., m = 0,1,2,3, ...n,
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hr(ln(kr-) is a spherical Hankel-function and
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where PE is an associated Legendre function I:T] With the abbreviated index

notation the incoming respectively scattered field are represented as:

.
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where Rewn stands for the regular part of wn i.e. the expression (2.2) with
hi1)(kr) replaced by jn(kr), a spherical Bessel function. The solution of

the problem is given by the T-matrix satisfying
](n - Z ]nn" Q. (2.6)
nl

In Ref. [2] it is shown that the T-matrix for.a single homogeneous scatterer

is of}the form
- !
T =- Q(Kﬁ,Ka)Q(OuC, Ke) | (2.7)

vhere Q(Re,Re) and Q(Out, Re) are matrices which are fumctions of the surface
S of thescatterer and of the electric and magnetic properties of the scatterer.
In the lossless case the T-matrix itself is well suited for numerical tests

- because it has to satisfy the following two relations
T%-T=j-Realparf of T (2.8)
T

|  (2.9)

where t stands for hermite conjugation and t for transposition. Tue lossless
case is described in Ref. [2] and carried through numerically in Refs. [8]
and [é] by means of a procedure in which (2.8) and (2.9) are considered es
subsidiary conditicns, the -explicit inversion of the Q-matrix being avoided
by forming the unitary equivalent. The fundamental matrix Q( |, ) for

a surface S as in Fig. 1 is given by:

Qre,0ut)=k, o5 vxRely (k7)x L}):  (k, 7) +
3
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where k1, vy and k2, H, are the wave vector and magnetic‘permeabilify out-—
side respectively inside the surface and is is the outward pointing normal
surface element.

Corresponding expressions Q(Out, Re), Q(Out, Out) and Q{(Re, Re) are for-
med easily noting that the first argument act on the functions i’)n(k{;) and
the second on functions @h(k2¥). With this slightly more general defini-
tion of the Q-matrix than that given in Ref. [2] it is possible to cover most
scattering configurations with constant material properties between surfaces,
including of course the case of infinitely conducting surfaces. The infinite-

ly conducting case is obtained by putting v

Lim P2
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The T-matrix formalism is by no means restricted to homogeneous single

= £ = i
£ #UE (k1 k2) and then tsaking

scatterer. The most direct extension is to the multilayered scatterer, Fig. 2.
The T-matrix T12 for the whole object is given by the Q-matrices Q1 associla-
ted with the outer surface S1 and the T-matrix T2 for the rest of the object

inside surface S,, taking into account that T2 is the T-matrix in & medium

2,
characterized by €, and ¥, Bﬂ.
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An iterative procedure for a multilayered scatterer starts by calculating

th2 T-matrix for the innermost surface and the ‘different Q-matrices for the
next surface. Then'the T-matrix for the two inner surfaces is constructed as
in (2.11). The prccedure is continued to the outermost surface. If the inner-
most surface is infinitely counducting the corresponding T-matrix is performed
as was pointed out above. The T-matrix for the homogeneous case is, of

« 2 . = .
course, reached by putting T =0 in (2.11). The formula (2.11) can be rewritten

as
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where
z 1 -1
T(ﬂ) = - Q (RQ,II?Q) Q (Uot?f,i?e.) (2.13)

is the T-matrix of a homogeneous scatterer bounded by the surface S1 and
media constants €y5 u1 and €55 u2 outside respectively inside the surface.
The terms obtained by a formal expansion of the inverse in (2.12) can be
interpreted as various multiple scattering contributions to the total
T-matrix [6]. In such an expansion there occur, besides the individual
T(i) matrices, Q1 mgtrices which, in accordance with the form of T(1),

can be associated with a passage of a wave going out through S, Thus

a (Q")—1 factor is associated with a passage in through 5, and a factor
(with the appropriate arguments of the Q1:s) (QT)~1 . Q1 with a reflection
at the inside of S,. The first few terms in the expansion of (2.12) can bve
depicted as in Fig. 3 and one easi:y sees thot in general one has exactly
the terms expected from a multiple scattering: picture.

The extension of the results above to the case of several multilayered
scatterers is given in detail in Ref. [6](cf, also [ﬁ]). An essential point
in this extension is the use of the translation properties of the different
wave functions. The total transition matrix T12 for two different multilayered.

scatterers situated at 31 respectively 32 with the corresponding T-matrices

T(1) respectively T(2) {see Fig. 4) is given by [6], [h]:



-1

+RE) Tl Ntz ) T QUESHT) TE)] -
[1+ T2, @ )TQR(&-2, )] R(-&)

(2.14)

where R and ¢ are such that
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The difference between R and ¢ is that ¢ has a Hankel function h;1)(kc) where
R'has a Bessel function jlﬁkc). Note that "Reazlpart of o" = R [h]. Formula

. . > > 7 . .
(2.14) is constructed under the assumption that l-a]._--za.j|>1"j for 1,2 = 1 *‘J =

R .
= 1,2 where r; is the radius from aj to the surface Sj (ef. Fig. b4).
The terms obtained by = formal expansion of the inverses in (2.1L4) can

be interpreted .as various multiple scattering contributions of the total
T-matrix, [h] see Fig. 5. In this way it is also seen"that the two. terms

in (2.14) correspond to waves scattered in all possible ways between the

scatterers and the last time scattered by scatterer number 1 respectively



scatterer number 2. It is also apparent that if T(2) - O, then

T

12

> > .
e R(aT) T(1) R(—aj) and correspondingly for the case T(1) = 0.



IITI. A numerical appliceation to a dielectric shell

As an application of the T-matrix formalism described in the previous
section the backscattering cross section for a layered dielectric object
with two spherical éurfaces is calculated. (We are indebted to Dr. K. Ost-
berg for the suggestion to consider this case; cf. Ref. [11] for a dis-
cussion of the corresponding concentric dielectric shell.) The radius of
the outer and-inner sphere are denoted by b and a respectively. The greater
sphere has its centre at the origin and the smaller sphere has its centre
at cz. The material constants are: outside “the greater sphere Mo €95 bet—

ween spheres Bys €50 and inside smaller sphere M3s €3¢ The materials are

such that Hy=H, =Mz, 5 =2k -2k3. In Figs. 6, 7, 8 and 9 the normalised cross
2 |Es . . . .
section = lim Lw; {£§F%_ 1s glven for backscattering as a function of the
r

angle between the incoming wave vector and the positive z-axis.The incoming
wave is a plene wave with the electric vector orthogonal to the z-axis. The

product k. b is equal to 27 in the diagrams, tne ratio ¢/b is chosen as a

1
parameter, and the ratio a/b is 0.5 in Figs. 6.7 and 0.8 in Figs. 8.9. The
calculations are made using formula (2.11) and the T-matrix for the inner
sphere is transformed fo the origin by means of the R-matrix in (2.15). As

a check of the numerical spproximations the relations (2.8) and (2.9) were
tested and compared with the maximal element of T (see Fig. 10) for

azimut index one. It might be noted that the program for this case with

the whole T-matrix {15 X 282 elements) fill uylall of a IBM 360 mschine. The
program was run in two steps. First the T-matrices were calculatgd for diffe-
rent ratios c/b? which were stored on a tape,then the differential cross sec-
tions were calculated reading the T-matrices from the tape. Of course the
programs could have been made smaller by not taking all azimnt indices to—
gether, but this could not have .been used to calculatévmatrices with greater

dimension. This is so because the translation matrices were calculated in such

a way that all the needed 3-j symbols were calculated explicitly. This pro-
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cedure contains big factorials which had to be -lower than 56! because of
the machine. A recurrence relation for the product of two 3-j symbols,
which will lower the computational time, is used in Ref. [1Q]A Presumably
this procedure also would permit an easier handling of the 3-j symbols in
the present case.

The curves in Figs. 6 and T show more sturcture than those of Figs. 8
and 9 as might be expected'since there 1s room for more wavelengths bet&een
the surfaces in the.case a/b = 0.5, In Fig. 8 and 9 the minima become deeper
and. the maxima become higher for increasing c¢. From Fig. 10 it can be seen
that the truncation error is largest for-the inner T-matrix in the case
a/b = 0.8. As explained above we were not able'to increase the dimension
of this T-matrix. However, as expected there will be a certain shielding
from the dielectric shell which will diminish this error which doesn't seem
to effect the total T-matrices as seen in Fig. 10. The tests for the T-
matrices in the case of maximal translation (¢ = b - a) are as good as could
be expected. It is to be noted that in the case of a/b = 0.5 the correspond-
ing maximal "effective" translation distance (taking the value of the di-
electric constant into account) is very.big and the dimension needed in-

creases with inecreasing translation.



.

IV. Concluding remarks

In scattering problems one usually Tirst calculates the induced sur-
face fields due to the incoming field, then out of the sﬁrface field, the
scattered field islcalculatéd. The advantage of the T-matrix formalism
[1], [2] is that it allows one to Jjump over the step of calculating the
surface fields. Instead the surface fields are'exﬁgnded in spherical func-
tions and then the unknown expansion coefficients are eliminated by means
of the two equations for the integral representation of the field inside and
outside the scatterer [1], [2].

One great advantage with the T-matrix formulation is that cnce the
T-rmatrix is calculated, the scattered field, outside the smallest sphere
including the scatterers and with centre at origin, can be calculated for
every incoming wave {not necessarily a plane wave). In Refs. [5] and [6]
and in the above it has been assuméd that the -source 1is situated outside the
scatterers but thié is not necessary. In faet, one could take the most
general configuration of multilayered scatterers énd put a surface outside
the whole configuration including the source and immerse this in a medium
including other multilayered“scattefers and so on. The T-matrix itself also
contains information sbout the numerical accuracy and consistencyP because
of the relations (2.8) and (2.9), wﬁich can be of great help estecially for
fully dielectric multilayefed scatterers.

Programs for rotational symmetric infinitely conducting scatierers
have been given by Waterman and McCarthy in Refs. [8] and [9]. Programs for
lossless retationally symmetric multilayered scatterers can be developed
by moderate extensions. of Waterman's programs. Translation matrices for

-+ > ;
wn and Re¢n can be found in Ref. [h] where also the formalism for an arbit-

rary number of scatterers is described in greater detail.
. " - +
The T-matrix formulation based on the functions $£ and Rewh of course
has the disadvantage of a slow rate of convergence for objects of size more

than two to three times the wavelength. However, the general structure of
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most of the formulas are valid for large classes of complete systems of
expansion functions, i.e. in particular also for the case of functions
possessing the opposite convergence property. (i.e; faster convergence
“for greater r;tio objectsize/wavelength.) This aspect of the formalism

deserves much further study.
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Fig. 1
Fig., 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. T
Fig. 8
Fig. 9
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Fig.
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Notations for a homogenous scatterer.

Notations for a multilsyered scatterer.

Muitiple scattering interpretation of Eq. (3.2).
Geometrical configuration for two scatterers.

Multiple scattering interpretation of Eq. (3.4).
Normalized differential backscattering cross section for a

dielectric sphere, with k

5 = 2k1 and radius b, enclosing a .di-

=k . and whose center is

electric sphere of radius a=b/2, with k 1

3
displaced.the amount ¢ along the positive z axis. A1l relative
magnetic index (1) are equal to one. The electric vector of the

incoming field is orthogonal to the z-axis and the cross section

is given for k1b=27tas a function of the angle between the

. positive z—axis and the incoming wave vector for c¢/b=0:——
e/b=0.1:- = -, ¢/b=0.2:=+—+—, ¢/b=0.3 "
Same as in Fig. 6 but now with ¢/b=0.b:~ "= - -, ¢/b=0.5:-+~~-.
Same as in Fig. 6 but mow with a/b=0.8 and c¢/b=0:—-; ¢/b=0.05:- - -,
e/b=0.10:~+—*—,
Same as in Fig. 8 but now with §=0.15:~ - - -, §=0.20¢—'—‘~'—.

Result of numerical tests for T-matrices.

Numerical test for T-matrices.
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