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Scattering of an electromagnetic plane wave
by a Luneburg lens. III. Finely stratified

sphere model
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The parallel iteration procedure for computing scattering by a multilayer sphere is described. The procedure
uses a successive doubling strategy applied to four sets of multiple-scattering amplitudes, which is reminiscent
of the fast Fourier transform (FFT) algorithm. The procedure is then used to calculate scattering of a plane
wave by a modified Luneburg lens. The evolution of the transmission rainbow for the Luneburg lens parameter
f�1 into an orbiting ray for f=1 and into a series of morphology-dependent resonances for f�1 is studied, and
various features of the scattered intensity as a function of scattering angle are commented on. It is found that
some resonances are formed without the presence of an exterior centrifugal barrier to confine them. © 2008
Optical Society of America
OCIS codes: 080.2710, 260.5740, 290.4020.
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. INTRODUCTION
his is the third and final paper in a series that examines
cattering of a plane wave by a sphere whose refractive
ndex profile is that of either a Luneburg lens or a modi-
ed Luneburg lens. This example of electromagnetic scat-
ering by a radially inhomogeneous sphere is both rich in
cattering phenomena and simple in that the analysis of
any of the phenomena in ray theory is analytically ex-

ctly soluble. In [1], transmission through the sphere was
onsidered in ray theory, and arguments were outlined
uggesting that both external reflection from the surface
nd transmission following a number of internal reflec-
ions from the surface vanish in the �→0 limit. In [2], the
ransverse electric (TE) polarization was examined semi-
uantitatively in wave theory by analyzing the effective
adial potential of a partial wave, and an explanation was
iven as to why the transverse magnetic (TM) polariza-
ion is not amenable to such an analysis. In this paper all
cattering processes are considered in wave theory for
oth polarizations. Rather than numerically computing
he exact interior partial wave radial functions for the in-
omogeneous sphere and then using them to obtain the
artial wave scattering amplitudes, the modified Luneb-
rg lens is instead approximated by a finely stratified
ultilayer sphere, and the multilayer sphere scattering

roblem is solved numerically.
There are two procedures for computing the partial

ave scattering amplitudes of a multilayer sphere: (i) the
rogressive iteration procedure [3–9] and (ii) the parallel
teration procedure [10]. The progressive procedure is
alid for any number of layers M. One starts by calculat-
ng single-scattering partial wave amplitudes at the core,
hen iteratively progressing outward toward the sphere
urface, adding on one layer at a time and recalculating
he amplitudes. But in doing this, Riccati–Bessel func-
ions and Riccati–Neumann functions must be evaluated
1084-7529/08/122991-10/$15.00 © 2
or small arguments comparable to the core size and large
artial wave numbers comparable to the overall sphere
ize. Such computations are prone to numerical overflow
nd underflow problems, especially when these results
re combined over and over again as the iteration
rogresses outward toward the sphere surface [3]. In
pite of these potential numerical difficulties, stable and
ighly accurate progressive iteration computer programs
ave been written [3–9] that compute scattering by a
ultilayer sphere, carefully avoiding the overflow and un-

erflow problems.
On the other hand, the parallel iteration procedure

tarts by calculating four single-scattering amplitudes at
very interface of the multilayer sphere, assuming the
umber of layers is M=2P. These four amplitudes are
hen combined together at pairs of adjacent interfaces
rom the core of the sphere to its surface [10]. Adjacent
airs of the four new amplitudes are again combined to-
ether iteratively until the four amplitudes for the entire
phere are obtained. This combination at pairs of inter-
aces performed in parallel from the core to the surface is
eminiscent of the successive doubling strategy of the fast
ourier transform (FFT) algorithm [11]. Both the progres-
ive and parallel iteration procedures require M combina-
ions of each scattering amplitude. The progressive proce-
ure uses the innermost part of the sphere for more
ombinations than the outermost part, whereas the par-
llel procedure uses all parts of the sphere equally in com-
inations. Although parallel iteration cannot be applied to
uch relatively simple systems as M=3 or M=5, it pro-
ides a robust and efficient alternative to progressive it-
ration when a sphere with a radially inhomogeneous re-
ractive index profile is modeled as a finely stratified
ultilayer sphere having M=2P layers.
The body of this paper is organized as follows. In Sec-

ion 2 the geometry is summarized. In Section 3 the de-
008 Optical Society of America
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ails of the parallel iteration procedure are given, and the
ay in which it avoids potential numerical overflow and
nderflow difficulties is described. In Section 4 numerical
esults are presented and interpreted for (i) the intensity
s a function of scattering angle for various values of the
odified Luneburg lens parameter f, and (ii) the size pa-

ameters of morphology-dependent resonances (MDRs)
hat occur for f�1. In each case special note is made to
he ways in which Luneburg lens scattering differs from
hat of a homogeneous sphere. Finally, in Section 5 a few
eneral conclusions are presented.

. GEOMETRY AND NOTATION
onsider a sphere of radius a centered at the origin of co-
rdinates and composed of M concentric layers of equal
idth �=a /M. An individual layer is denoted by j, where
� j�M. The core is layer 1, the outermost layer is M,
nd the medium exterior to the sphere is layer M+1. The
adius of layer j is aj= j�, and the overall sphere radius is
M=a. The continuous refractive index profile N�r� of a
adially inhomogeneous sphere is discretized to a con-
tant refractive index Nj=N�aj−� /2� in each of the layers,
nd Nj is assumed in this paper to be real. The interface
etween layers j and j+1 is called the j, j+1 interface. The
ree-space wavelength of the electromagnetic plane wave
ncident on the multilayer sphere is �, the wave number
s k=2� /�, and the exterior and interior size parameters
f the j, j+1 interface are

Xj,j+1 = Nj+1kaj, �1a�

Yj,j+1 = Njkaj. �1b�

espectively. The refractive index profile of a modified
uneburg lens is

N�r� = �1 + f2 − �r/a�2�1/2/f �2�

or r�a.

. PARALLEL ITERATION PROCEDURE
. Factorization of the Multilayer Sphere Amplitudes

n the parallel iteration procedure for calculating scatter-
ng by a multilayer sphere [10], four basic partial wave
mplitudes Nn, Dn, Pn, and Qn for each partial wave num-
er n are used to construct the partial wave scattering
mplitudes an and bn. In order to avoid overflow and un-
erflow problems, these amplitudes are factored into
erms that rapidly increase or decrease as n increases and
erms that remain relatively well behaved. When an and
n are finally obtained in the last step of the procedure,
ll the rapidly increasing and decreasing factors are
ound to cancel, leaving only ratios of the well-behaved
erms. Thus only the well-behaved terms need be numeri-
ally computed. Once the partial wave scattering ampli-
udes are obtained, the scattered intensity is computed in
he standard way [12]. It should be noted that this can-
ellation of the rapidly increasing and decreasing factors
oes not occur for the interior amplitudes cn and dn.
As a first step of the parallel iteration procedure, three

unctions that appear naturally in the factorization of the
mplitudes are formed from ratios of Riccati–Bessel func-
ions �n�w� and Riccati–Neumann functions �n�w�,

En�w� = �n��w�/�n�w�, �3a�

Fn�w� = �n��w�/�n�w�, �3b�

Gn�w� = �n�w�/�n�w�, �3c�

here the prime symbol indicates a derivative with re-
pect to the argument of the function. For small w corre-
ponding to the radius of a layer near the core and a large
artial wave n corresponding to the overall sphere radius,
hese functions have the asymptotic behaviors [13]

En�w� → �n + 1�/w, �4�

Fn�w� → − n/w, �5�

Gn�w� → �− 1
2��e/2�2n+1�w/�n + 1/2��2n+1. �6�

s n	w, both En and Fn only slowly increase, but Gn rap-
dly decreases. However, the ratio

Gn�w�/Gn�w + 
� → �1 − 
/w�2n+1, �7�

hich appears in the factorization of the amplitudes,
lowly decreases as long as 
�w.

Following [10], the factorization of the amplitudes used
o construct an and bn proceeds in four steps. (i) First, four
asic single-scattering amplitudes are calculated at each
nterface from the core of the multilayer sphere to its
uter surface. (ii) Next, one combines the amplitudes of
wo adjacent interfaces together to form four basic
ultiple-scattering amplitudes for each of the adjacent

nterface pairs from the core to the surface. (iii) This pro-
edure of combining together the four basic amplitudes at
airs of adjacent clusters of interfaces is repeated until
ne obtains a single set of the four basic multiple-
cattering amplitudes for the entire M=2P layer sphere.
iv) Finally, two of the final four amplitudes are used to
orm the partial wave scattering amplitudes an and bn.
or notational simplicity, in the remainder of this section

he partial wave number is omitted and the TE or TM po-
arization state is implicit in the values of � and �, which
re defined as

� = Nj for TE,

=Nj+1 for TM, �8a�

=Nj+1 for TE,

=Nj for TM. �8b�

The following development switches back and forth
mong the specific examples of the homogeneous sphere,
he coated sphere, etc., and the totally general case of the

layer sphere with an arbitrary refractive index profile.
he four basic single-scattering amplitudes for the j, j
1

nterface are [10]

N = ���X �� �Y � − �� �X ���Y �, �9a�
j,j+1 j,j+1 � j,j+1 � j,j+1 j,j+1
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Dj,j+1 = ���Xj,j+1����Yj,j+1� − ����Xj,j+1���Yj,j+1�, �9b�

Pj,j+1 = ���Xj,j+1����Yj,j+1� − ����Xj,j+1���Yj,j+1�, �9c�

Qj,j+1 = ���Xj,j+1����Yj,j+1� − ����Xj,j+1���Yj,j+1�. �9d�

quations (9a)–(9d) can be factored as

Nj,j+1 = ��Xj,j+1���Yj,j+1�G�Xj,j+1�G�Yj,j+1�nj,j+1, �10a�

Dj,j+1 = ��Xj,j+1���Yj,j+1�G�Yj,j+1�dj,j+1, �10b�

Pj,j+1 = ��Xj,j+1���Yj,j+1�G�Xj,j+1�pj,j+1, �10c�

Qj,j+1 = ��Xj,j+1���Yj,j+1�qj,j+1, �10d�

here

nj,j+1 = �E�Yj,j+1� − �E�Xj,j+1�, �11a�

dj,j+1 = �E�Yj,j+1� − �F�Xj,j+1�, �11b�

pj,j+1 = �F�Yj,j+1� − �E�Xj,j+1�, �11c�

qj,j+1 = �F�Yj,j+1� − �F�Xj,j+1�. �11d�

he terms ��Xj,j+1���Yj,j+1� can be considered as common
actors in Eqs. (10a)–(10d) and at the end of the calcula-
ion will cancel. Thus only nj,j+1, dj,j+1, pj,j+1, qj,j+1, and
ome of the G factors need be computed. As an example of
his cancellation, a homogeneous sphere has M=1, j=1,
nd the partial wave scattering amplitudes are

an,bn = N12/�N12 + iD12�. �12�

ubstituting Eqs. (10a)–(10d) into Eq. (12), the factors
�X12���Y12� cancel, as also does G�Y12�, and one has

an,bn = G�X12�n12/�G�X12�n12 + id12�. �13�

Proceeding to the next step, for the specific case of a
oated sphere with M=2 and j=1,2, the four basic
ultiple-scattering amplitudes N123, D123, P123, Q123 are

btained [10] from combinations of the four basic single-
cattering amplitudes N12, D12, P12, Q12 at interface 1,2
nd N23, D23, P23, Q23 at interface 2,3. One has

N123 = D12N23 − N12P23 = G�Y12�G�Y23�G�X23�n123,

�14a�

D123 = D12D23 − N12Q23 = G�Y12�G�Y23�d123, �14b�

P123 = Q12N23 − P12P23 = G�Y23�G�X23�p123, �14c�

Q123 = Q12D23 − P12Q23 = G�Y23�q123, �14d�

here

n123 = d12n23 − n12p23G�X12�/G�Y23�, �15a�

d123 = d12d23 − n12q23G�X12�/G�Y23�, �15b�

p = q n − p p G�X �/G�Y �, �15c�
123 12 23 12 23 12 23
q123 = q12d23 − p12q23G�X12�/G�Y23�. �15d�

he term G�Y23� again can be considered as a common
actor in Eqs. (14a)–(14d) and at the end of the calculation
ill cancel. The partial wave scattering amplitudes are

an,bn = N123/�N123 + iD123�. �16�

ubstituting Eqs. (14a)–(14d) into Eq. (16), the factor
�Y12� cancels as well, and the coated sphere partial wave

cattering amplitudes become

an,bn = G�X23�n123/�G�X23�n123 + id123�. �17�

gain, only n123, d123, p123, q123, and G�X23� need be cal-
ulated. For the case of a general multilayer sphere, the
ultiple-scattering amplitudes Nj−1,j,j+1, Dj−1,j,j+1,

j−1,j,j+1, Qj−1,j,j+1 for the combination of the j−1, j and
, j+1 interfaces analogous to Eqs. (14a)–(14d) are ob-
ained in an identical way from combinations of the
ingle-scattering amplitudes Nj−1,j, Dj−1,j, Pj−1,j, Qj−1,j at
nterface j−1, j, and Nj,j+1, Dj,j+1, Pj,j+1, Qj,j+1 at interface
, j+1. There are now half as many amplitudes as there
ere in the previous step, and the term G�Yj,j+1� can be

onsidered as a common factor to Nj−1,j,j+1, Dj−1,j,j+1,
j−1,j,j+1, Qj−1,j,j+1 that will cancel at the end of the calcu-

ation.
In like manner, pairs of adjacent two-interface ampli-

udes can be combined together in parallel from the core
f the sphere to the surface to form four-interface ampli-
udes in exactly the same way as pairs of adjacent single-
nterface amplitudes were combined in Eqs. (14a)–(14d)
o form two-interface amplitudes. There are again half as
any of these as there were in the previous step, and

ommon factors of G�Y� will cancel at the end of the cal-
ulation. Adjacent pairs of these can be combined together
n a generalization of Eqs. (14a)–(14d) in parallel from the
ore to the surface to form eight-interface amplitudes
ith common G�Y� factors that will cancel, etc. This pro-

edure is continued until one set of composite partial
ave amplitudes N12...M+1, D12...M+1, P12...M+1, Q12...M+1 for

he entire M=2P layer sphere have been formed. They are
actored into a large number of rapidly varying G�Y�
erms and the well-behaved terms n12...M+1, d12...M+1,
12...M+1, q12...M+1. The partial wave scattering amplitudes
or scattering by the entire multilayer sphere are [10]

an,bn = N12...M+1/�N12...M+1 + iD12...M+1�. �18�

ubstituting in, the rapidly varying terms cancel, and one
btains

an,bn = G�XM,M+1�n12...M+1/�G�XM,M+1�n12...M+1 + id12...M+1�.

�19�

hus only n12...M+1, d12...M+1, p12...M+1, q12...M+1, and
�XM,M+1� need be computed. This procedure is valid for
ny refractive index profile N�r�→Nj with 1� j�2P.
Equations (9)–(19) warrant a number of comments con-

erning the way in which the factorization process avoids
umerical overflow and underflow problems. These com-
ents are perhaps best illustrated in terms of a specific

xample. Consider an M=128 layer sphere of radius a
5.12 �m illuminated by light with wavelength �
0.512 �m. The thickness of each layer is �=0.04 �m.
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he sphere is assumed to be a Luneburg lens with f=1.0
nd N�0�=1.414, as in Eq. (2). The overall size parameter
f the sphere is X128,129=62.83. The convergence of the
artial wave sum as n→� is determined by the simulta-
eous faster-than-exponential increase in �n�ka� in the
enominator of an and bn and the faster-than-exponential
ecrease in �n�ka� in the numerator, independent of the
nterior functions Fn�ka� and Gn�ka� of [2]. This is be-
ause the second set of interior functions Un�ka� and
n�ka� of [2] do not occur in an and bn. Thus the largest
artial wave nmax of the sum required for single-precision
ccuracy is

nmax = 1 + X128,129 + 4.3�X128,129�1/3 = 80. �20�

he combination of the smallest argument X12=0.694 and
argest partial wave number n=80 gives [13] �80�0.694�

10−157 and �80�0.694��10155. But the individual single-
nterface amplitudes of Eqs. (11a)–(11d) contain only the
unctions E and F, which never increase beyond 102 for
his example. Similarly, G80�0.694��10−322. But since
nly ratios of the G functions appear in Eqs. (15a)–(15d),
he smallest ratio is G80�X12� /G80�Y23��10−49, which is
ore manageable. Finally, since X128,129 is the overall size

arameter of the sphere, �n�X128,129� and �n�X128,129� are
omputed using the usual procedures of double-precision
pward recursion and downward recursion [14], respec-
ively, to form G�X128,129� in Eq. (19).

. Numerical Evaluation of En„w…, Fn„w…, and
n„w… /Gn„v…
he function En�w� is the logarithmic derivative of �n�w�,
nd there are widely publicized routines for computing
his for a real refractive index, as assumed here, using
ownward recursion [6,15]. For example,

En−1�w� = �n/w� − 1/�En�w� + �n/w�� �21�

or l�n�nstart with

nstart = nmax + 15, �22a�

Enstart+1�w� = 0. �22b�

he function Fn�w� is found to be stable when computed
sing upward recursion. Starting with

F0�w� = − tan�w�, �23�

he upward recursion is

Fn�w� = − �n/w� + ��n/w� − Fn−1�w��. �24�

he ratio Gn�Xj−1,j� /Gn�Yj,j+1� is also found to be stable
hen computed using upward recursion, assuming that
n�Xj−1,j�, En�Yj,j+1�, Fn�Xj−1,j�, and Fn�Yj,j+1� have already
een separately computed. Starting with

G0�Xj−1,j�/G0�Yj,j+1� = tan�Xj−1,j�/tan�Yj,j+1�, �25�

he upward recursion is
Gn�Xj−1,j�/Gn�Yj,j+1� = Gn−1�Xj−1,j���n/Xj−1,j� + Fn�Xj−1,j��

���n/Yj,j+1� + En�Yj,j+1��/�Gn−1�Yj,j+1�

���n/Xj−1,j� + En�Xj−1,j����n/Yj,j+1�

+ Fn�Yj,j+1���. �26�

he ratio of the G functions appearing in the generaliza-
ion of Eqs. (15a)–(15d) is calculated for the following val-
es of j. Let T be the iteration number for the M=2P layer
phere, where 1�T�P−1, and let K be an integer such
hat 0�K�2P−T−1. When the amplitudes n, d, p, q for
he T iteration are formed by combining pairs of the pre-
iously obtained amplitudes n, d, p, q for the T−1 itera-
ion, as in Eqs. (15a)–(15d), the ratio Gn�Xj−1,j� /Gn�Yj,j+1�
s calculated for

j = 2T−1 + 1 + K�2T�. �27�

he integers K span the range from the sphere’s core to
ts surface.

. RESULTS
. Intensity as a Function of Scattering Angle
his subsection contains a catalog of the various pre-
icted phenomena when the scattered intensity is plotted
s a function of scattering angle. Figure 1 shows I��� for a
uneburg lens with f=1.0 and radius a=8.117 �m and
ith the wavelength of the incident light �=0.51 �m.
his corresponds to the size parameter ka=100.0. The
uneburg lens was divided into M=27=128 layers of
idth �=0.0634 �m, and the parallel iteration procedure
as used. Since ���, the sphere is considered finely

tratified, and subdividing the sphere further revealed no
dditional structure of I���. The intensity computed for
a=60.0 was found to be identical to that of [8], where the
rogressive iteration procedure was used. The scattered
ntensity for the TM polarization is seen in Fig. 1 to be
lmost identical to that for the TE polarization. This is
ot surprising for the following reason. In ray theory, the

ig. 1. TE (solid curve) and TM (dashed curve) intensity as a
unction of the scattering angle � for a Luneburg lens with f
1.0, a=8.117 �m, and �=0.51 �m computed for an M=128

ayer sphere using the parallel iteration procedure.
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reatest difference between TE and TM scattering at an
nterface occurs in the vicinity of the Brewster angle
here all of the TM light is transmitted and none is re-
ected. Two well-known examples of this for scattering of
plane wave by a homogeneous water sphere with n

1.333 are as follows. TM external reflection vanishes
hen �=73.8°, and TM internal reflection vanishes when

he angle of incidence on the sphere surface from the in-
ide is �t=36.9°, corresponding to an incident ray impact
arameter of �=52.9°. Since this is close to the Descartes
mpact parameter of the first-order rainbow, �R=59.4°,
he first-order rainbow of a homogeneous sphere is domi-
antly TE polarized. For scattering by a modified Luneb-
rg lens in the finely stratified model, negligible light is
eflected at each interface regardless of the angle of inci-
ence, except at near grazing incidence, since the refrac-
ive index difference between two adjacent layers is small.
hus the Brewster angle occurs when the angle of inci-
ence on a layer is near 45°. This 45° incidence condition
iving total transmission of the TM ray occurs, at most,
wice on a curved ray trajectory inside the sphere, and
ransmission is otherwise expected to be near total for
oth polarizations at every other point. Thus TE and TM
cattering should be quite similar. For f=1.1 and 0.9, the
cattered intensity for the TE and TM polarizations was
lso computed and found to be nearly identical.
As was discussed in [2], the abrupt transition of the

cattered intensity from the ray theory illuminated region
o the shadowed region is smoothed in wave theory. The
hysical optics model predicts that in the vicinity of the
eak caustic corresponding to the orbiting ray, the scat-

ered intensity is

I��� � �F��� − F���ka/��1/2��2, �28�

here

F�w� =�
0

w

dv exp�i�v2/2� �29�

nd

� = ��/2� + �. �30�

quation (28) is identical to a Fresnel straight-edge pat-
ern and appears prominently in Fig. 1. This is only an
pproximation, however. For ka=100, Eq. (28) predicts
hat the main peak of the Fresnel straight-edge pattern
hould occur at �=77.2°, whereas it is observed to occur at
=58.2° in Fig. 1. Physically, the transition is due to ra-
iation shed by the orbiting ray. For ��58.2° the shed ra-
iation interferes with rays transmitted through the
phere, producing the oscillations of the Fresnel straight-
dge pattern. The fine oscillations in Fig. 1 for ��100°
re the interference of the shed radiation of the counter-
ropagating orbiting rays incident at the top and bottom
f the sphere. The path length difference on the surface of
he sphere of the two counterpropagating orbiting rays
hould produce an interference pattern that is indepen-
ent of � and has a periodicity of ��=� /ka=1.80° /cycle.
he oscillations in Fig. 1 for ��100° are in good agree-
ent with this prediction, having the periodicity ��
1.82° /cycle.
A broad glory enhancement of the scattered intensity is
vident for ��180°. For ��60°, the fine oscillations su-
erimposed on the coarser Fresnel straight-edge oscilla-
ions are the interference of the transmitted light with
he near-forward direction diffracted light. For ��9° dif-
raction dominates over transmission. For ��9° the dif-
racted and transmitted light of Eq. (18) of [1] have
oughly the same magnitude and destructively interfere,
roducing the large dip in the scattered intensity in Fig.
. For ��9° transmission dominates over diffraction, and
he transmission–diffraction interference becomes pro-
ressively weaker as a function of �.

Figure 2 compares the TE intensity as a function of �
or f=1.1, 1.0, and f=0.9, respectively, for a=8.117 �m,
=0.51 �m, and M=128. For f=1.1 the predicted Des-
artes rainbow angle of �R=55.74° of Eq. (39) of [1] quali-
atively agrees with Fig. 2. The rainbow supernumerary
tructure is evident for 10° ���50°. For ��10° the su-
ernumerary structure interferes with and merges into
he near-forward diffractive structure. The rainbow’s
omplex ray is evident for ��60°. The small amplitude
scillatory structure observed for ��80° is due to inter-
erence of radiation of the complex ray of the rainbow
ormed from light incident on the top half of the sphere
hat has damped for less than 180° and weaker counter-
ropagating radiation of the complex ray of the rainbow
ormed from light incident on the bottom half of the
phere that has damped for greater than 180°. The TM in-
ensity was also calculated for f=1.1 and f=0.9 and was
ound to be nearly identical to the TE intensity of Fig. 2.
n particular, the transmission rainbow for f=1.1 is virtu-
lly identical for the TE and TM polarizations.
The main rainbow peak of Fig. 2 for f=1.1 decreases

nto the main peak of the Fresnel straight-edge intensity
attern of the orbiting ray when f=1.0. The rainbow su-
ernumeraries evolve into the oscillatory structure of the
resnel straight-edge pattern, and the rainbow’s complex
ay grows into radiation continuously shed by the orbiting
ay. Since the scattering angle of the orbiting ray in Fig. 1

ig. 2. TE intensity as a function of the scattering angle � for a
odified Luneburg lens with f=0.9 (dashed curve), f=1.0 (solid

urve), and f=1.1 (dotted–dashed curve) for a=8.117 �m and �
0.51 �m computed for an M=128 layer sphere using the paral-

el iteration procedure.
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s larger (i.e., �=90° in ray theory) than that of the rain-
ow ray in Fig. 2 (i.e., �R=55.74°) and the radiation shed
y the orbiting ray for f=1.0 falls off more slowly than
oes the rainbow’s complex ray for f=1.1, the interference
attern in Fig. 1 for ��90° has both a larger baseline and
larger modulation depth than does the corresponding

nterference pattern for f=1.1 in Fig. 2.
For f=0.9 in Fig. 2, the orbiting peak has largely dissi-

ated and the falloff of the intensity for ��90° is slower
han for f=1.0 in Fig. 1. Although rays are now transmit-
ed through the sphere for this angular range, a large am-
litude interference pattern again having the periodicity
�=1.82° /cycle occurs in Fig. 2, signaling the presence of
t least one more ray in this angular region. The origin of
his additional ray can be understood as follows. For
�1, the grazing incidence ray of Fig. 2(b) of [1] exits the
phere at �=180° tangent to its surface. This tangency at
nly one point at the exit likely causes electromagnetic
urface waves [16] for � larger than 180° that contribute
o the interference pattern. This interpretation is qualita-
ively supported by the fact that a geometrical ray and a
ounterpropagating surface wave should have nearly the
ame amplitude for � near 180° and should produce the
ype of large modulation depth interference pattern ob-
erved in Fig. 2. Finaly, the glory enhancement is again
vident in Fig. 2 for ��180°, and the transmitted light
gain interferes with diffracted light at small angles.

. TE and TM Resonances
igures 3(a) and 3(b) show the scattering efficiency as a

unction of sphere radius for f=0.9, �=0.51 �m, and M
128. The TM efficiency has been vertically offset from

he TE efficiency by 0.10 for clarity. The optical theorem
17] relates the scattering efficiency to the total scattering
mplitude in the forward direction, which here is com-
osed of diffraction plus transmission. The coarse oscilla-
ions in the scattering efficiency in Fig. 3(a) are due to
iffraction–transmission interference. From Eq. 33 of [1]
he ray transmitted through a modified Luneburg lens in
he forward direction acquires a phase of

�trans = ka + ka��f2 + 1�/f�arcsin��f2 + 1�−1/2� − �, �31�

nd the diffracted ray in the forward direction acquires a
hase of [18]

�diff = 2ka + �/2. �32�

ransmission and diffraction constructively interfere in
he forward direction when

�trans − �diff = 2�P, �33�

here P is an integer. For f=0.9, the sphere radii for con-
tructive interference predicted from Eqs. (31)–(33) are
=4.279 �m, 5.023 �m, 5.768 �m, 6.512 �m, and
.256 �m, which closely agree with the results of Fig.
(a). Equations (31)–(33) were found to also accurately de-
cribe the coarse oscillations in the scattering efficiency
or f=1.0 and f=1.1, which was free of MDR structure.

The sequence of small peaks superimposed on the
iffraction–transmission interference in Fig. 3(a) and
hich are shown in more detail in Fig. 3(b) are the first

adial order (i.e., S=0) MDRs. The size parameter of
hese resonances is given in Table 1 and was numerically
etermined by locating the value of ka for a given partial
ave, where an or bn took on the maximum value of 1.0

or N�r� real. The full width at half-maximum of the reso-
ances is about �ka�0.37, and the uncertainty in the
esonance positions due to the numerical search employed
s �ka= ±0.006. It is felt that these few resonances, and
he resonances for f=0.75 considered below, are represen-
ative of resonances of a modified Luneburg lens. An esti-
ate of the resonant size parameter based on the loca-

ions of bound states in the locally parabolic effective
adial potential inside the sphere is [2]

ka = �n + 2S + 3/2��2f/�f2 + 1��, �34�

here S=0,1,2,3. . . is the radial order. Contrary to the
DRs of a homogeneous sphere [19–21], the size param-

ters of the TE and TM resonances of a modified Luneb-
rg lens are found to be nearly identical. In Table 1, the

ig. 3. (a) Scattered efficiency 
 as a function of sphere radius
or a modified Luneburg lens with f=0.9 and �=0.51 �m. The ef-
ciency for the TM polarization has been vertically offset by �

0.1 for clarity. (b) TE scattered efficiency 
 for a smaller range
f sphere radii illustrating the S=0 resonances in the partial
aves n=48 through n=53.
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ize parameters of the TM resonances are larger than the
E resonant size parameters by �ka=0.009 on average,
hereas for a homogeneous sphere with n=50, S=1, and
=1.47, the difference is [20] �ka=0.469. The differing

ize parameters of TE and TM resonances of a homoge-
eous sphere are due to the fact that (i) the interior func-
ions for both polarizations are combinations of Riccati–
essel functions and Riccati–Neumann functions and

hat (ii) the TE and TM boundary conditions differ. This
ifference of boundary conditions causes an S-radial or-
er MDR (with S=1,2,3. . . for a homogeneous sphere) for
he TE polarization to have S humps inside the sphere,
hereas the TM resonance has S+1 humps inside [22].
n the other hand, for a modified Luneburg lens, (i) the

nterior functions Fn�kr� and Gn�kr� of [2] for the TE and
M polarizations differ, but (ii) since the interior func-
ions are functions of kr rather than Nkr and N�a�=1, the
E and TM boundary conditions to be matched at the
phere surface become identical. Thus one can conclude
hat differences in boundary conditions are more impor-
ant than differences in radial functions for producing the
iffering size parameters of TE and TM resonances. The
stimated size parameters of Eq. (34) are on average
ka=0.357 larger than the values in Table 1. But the av-
rage estimated distance between that adjacent TE reso-
ances of Eq. (34) is �ka=0.994, which agrees well with
he computed average distance of �ka=0.989 between the
E resonances in Table 1. These comparisons indicate
hat Eq. (34) is a reasonably accurate first-order approxi-
ation of the positions of the resonances of a modified
uneburg lens.
Perhaps the most novel feature of the modified Luneb-

rg lens MDRs is their value of

X = n�n + 1�/�ka�2. �35�

s was discussed in [2], for X�1 a partial wave radial
unction must tunnel through the centrifugal barrier to
et to the interior well and be resonantly captured by it.
or a homogeneous sphere, this is exactly what occurs
nd all resonances have X�1 (see, for example, Tables 1
nd 2 of [20]). But for a modified Luneburg lens, the
DRs of Table 1 have an average X value of 0.960; i.e.,

he MDR is formed before the centrifugal barrier has
rown high enough to require tunneling. The fact that X
1 for these resonances can be qualitatively understood

Table 1. TE and TM Resonant Size Parameters for
f=0.9, �=0.51 �m, and M=128 as a Function of the

Partial Wave Number na

n �ka�TE �ka�TM �ka�TE of Eq. (34)

48 49.600 49.613 49.226
49 50.586 50.598 50.221
50 51.584 51.584 51.215
51 52.569 52.582 52.210
52 53.555 53.567 53.204
53 54.553 54.553 54.199
54 55.538 55.551 55.193
55 56.524 56.536 56.188

aThe numerical uncertainty in each size parameter is �0.006. The predicted TE
ize parameters of Eq. �34� are given in the final column.
sing the effective potential analysis of [2]. The effective
adial potential for the TE resonance of f=0.9 and n=50
t ka=51.584 is shown in Fig. 4. In the language of quan-
um mechanics, an attractive potential supports a num-
er of bound states whose energies are various heights
bove the bottom of the potential well. The ground state
nergy of a harmonic oscillator lies quite close to the bot-
om of its parabolic well and is significantly closer to the
ottom than is the ground state of either an infinite
quare well or an Airy well. When the effective potential
pproach is applied to light scattering, the partial wave
umber is considered fixed and the incident partial wave
as a fixed energy. As the size parameter of the scatterer

s varied, the effective potential and its bound states move
p or down in concert. In the approximation considered in
2], when the energy of one of the bound states coincides
ith the fixed energy of the partial wave, an MDR is

ormed. Such is the case in Fig. 4, the S=0 ground state
nergy of the locally parabolic potential well inside the
phere coincides with the fixed energy of the n=50 partial
ave. In the trajectory model of ray theory, the corre-

ponding ray is incident on the sphere near its edge and
enetrates into it. As it enters the sphere its radial veloc-
ty immediately slows and remains relatively small from
he sphere surface to the classical turning point at r /a
0.835 and then back to the surface again. The ray
pends slightly more time inside the sphere than it would
f the sphere were slightly larger or smaller. The en-
anced scattering of an MDR is associated with the longer

nteraction time. This resonance occurs even though there
s no centrifugal barrier straddling the sphere surface,
olding the partial wave in the interior well.
Figures 5(a) and 5(b) show the TE scattering efficiency

s a function of the sphere size parameter for f=0.75, �
0.51 �m, and M=128. In addition to a spectrum of S
0 resonances, there is now a spectrum of very weak S
1 resonances. Again the size parameters of the TE and
M resonances nearly coincide. For example, for the par-

ial wave n=50, the TE resonance with S=0 occurs at
a=49.403, giving X=1.045. The S=1 resonance occurs at

ig. 4. Effective radial potential of the partial wave n=50 as a
unction of r /a for ka=51.584 corresponding to the S=0 reso-
ance. The effective energy of this size parameter is denoted by
he horizontal line U =2661.
eff
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a=51.510, giving X=0.961. For the TM polarization, the
esonances occur at ka=49.415 and ka=51.522. The full
idth at half-maximum of the S=0 resonances has nar-

owed to �ka�0.25, and the uncertainty in the resonance
ositions due to the numerical search employed is again
ka= ±0.006. The S=0 resonances appear prominently in
ig. 5(b), and each of the much weaker S=1 resonances
ppear as a shoulder on the right side of each S=0 peak.
he effective potential wells for the two TE resonances
re shown in Figs. 6(a) and 6(b). The S=0 ground state of
he locally parabolic well now occurs when the well and
ts bound states have been raised upward in Fig. 6(a) so
hat a small centrifugal barrier is present for 0.965
r /a�1.022. It is suggestive to attribute the narrower
idth of the S=0 resonances here to the presence of the
eak centrifugal barrier for f=0.75 that was absent in
ig. 4 for f=0.9. The S=1 first excited state occurs higher

n the well, so the well and its bound states must be low-
red in Fig. 6(b) in order to make the first excited state
oincide with the fixed energy of the incident partial

ig. 5. (a) TE scattered efficiency 
 as a function of sphere ra-
ius for a modified Luneburg lens with f=0.75 and �=0.51 �m.
b) TE scattered efficiency 
 for a smaller range of sphere radii
llustrating the S=0 resonances in the partial waves n=50
hrough n=56.
ave. As the potential well is lowered, the peak of the
entrifugal barrier now falls below the energy of the inci-
ent partial wave and no tunneling occurs. The size pa-
ameters of the TE resonances estimated from Eq. (34)
re ka=49.440 for S=0, which is higher than the ob-
erved TE size parameter by �ka=0.037, and ka=51.360
or S=1, which is lower than the observed size parameter
y �ka=0.150. Equation (34) is again seen to be reason-
bly accurate, with its accuracy increasing as the radial
rder decreases, where the MDR is trapped in a deeper
nterior well behind a higher centrifugal barrier. The
ame trend is followed by the first-order estimate of the
esonant size parameters of a homogeneous sphere [20].
he widths of the Luneburg lens MDRs examined here
re orders of magnitude larger than the widths of the ho-
ogeneous sphere MDRs. For a homogeneous sphere,

hree radial orders of resonances occur [20] for n�50. For
=1, the full width at half-maximum is �ka�10−6, for
=2 it is �ka�10−4, and for S=3 it is �ka�10−2. It is

ikely that the cause of the orders-of-magnitude difference

ig. 6. Effective radial potential of the partial wave n=50 as a
unction of r /a for (a) ka=49.403 corresponding to the S=0 reso-
ance and (b) ka=51.510 corresponding to the S=1 resonance.
he effective energy of this size parameters is denoted by the
orizontal line Ueff=2441 in (a) and Ueff=2653 in (b).
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n the width of Luneburg lens MDRs and homogeneous
phere MDRs results from the great difference between
he spheres’ effective radial potentials. A modified Luneb-
rg lens has a locally parabolic effective potential, either
ithout a centrifugal barrier or with only a minimal one.
he Airy effective potential of a homogeneous sphere has
much larger centrifugal barrier adjacent to a refractive

ndex discontinuity. It is known that as a homogeneous
phere acquires an imaginary part to its refractive index,
he width of the resonances increases. Similarly, it would
e of interest to study the properties of MDRs for a num-
er of very different effective radial potentials in order to
etermine how the potential shape affects the resonances’
roperties.

. CONCLUSIONS
lthough electromagnetic scattering of a plane wave by a
omogeneous sphere has been studied extensively for the

ast century, scattering by more complicated objects such
s spheroids, homogeneous spheres having a number of
nterior inclusions, and radially inhomogeneous spheres
ave received less study. A question of great general in-
erest is the following. Putting aside the question of sphe-
oids and homogeneous spheres with inclusions, does
cattering by a sphere with a radially inhomogeneous re-
ractive index provide only a perturbation on what one
ees for scattering by a homogeneous sphere, or do new
cattering phenomena now make their presence known?
he characterization [23–25] of droplets of volatile liquids
aving evaporation at the surface by various optical tech-
iques assumes the perturbation point of view. If a drop-

et’s refractive index rapidly decreases near the surface,
he one-internal-reflection rainbow continues to exist in
ts usual form. But the rainbow scattering angle and su-
ernumerary periodicity change in response to the refrac-
ive index decrease near the surface. Similarly, MDRs
ontinue to exist in their usual form, but the resonant size
arameter and width change their values slightly [26,27].
easurement of the rainbow or MDR shifts can be used

s a diagnostic to characterize various physical properties
f the droplet being studied. But if the droplet shape or
efractive index variation becomes large enough, new
henomena occur as well. As an example for the case of
hape perturbations, if a homogeneous sphere is distorted
nto a spheroid and the aspect ratio becomes large
nough, the rainbow evolves into a hyperbolic umbilic
austic [28]. Similarly, the axial glory caustic evolves into
n astroid as the spherical symmetry of the scatterer is
roken [29]. Also, an MDR splits into a family of reso-
ances with differing azimuthal mode numbers [30]. For
sphere with certain radially inhomogeneous refractive

ndex profiles, two or more one-internal-reflection rain-
ows can occur [31], and the structure of the glory can be-
ome more complicated [32].

This set of three papers addresses the above-posed
uestion for the refractive index profile of a modified
uneburg lens. Many of the phenomena of scattering by a
omogeneous sphere continue as before. But a number of
ew effects occur as well. Since N�r�=1 inside the sphere
s r→a, internal and external reflection at the surface
re minimal at best. The only way to attribute part of the
cattering to internal and external reflection is to redefine
hese processes from a multiple-scattering point of view,
sing one of the forms of the multilayer sphere Debye se-
ies. A transmission rainbow now occurs virtually identi-
ally for both the TE and TM polarizations, and all of its
etails are, surprisingly, exactly soluble in ray theory.
ne can come very close to the conditions for classical or-
iting for f=1, and with a more complicated refractive in-
ex profile one could exactly achieve the orbiting condi-
ion. Finally, MDRs can occur without having a refractive
ndex discontinuity at the sphere surface or an external
entrifugal barrier to hold them in. The parabolic varia-
ion of the effective radial potential due to the Luneburg
ens’s special N�r� does the job itself. These effects were
dentified and analyzed in this set of papers in order to
urther understand and appreciate the richness of phe-
omena that occur for electromagnetic scattering by an
bject as geometrically simple as a sphere when its refrac-
ive index profile assumes some degree of complexity. An-
ther analytically soluble refractive index profile is dis-
ussed in [33].

A further generalization of the Luneburg lens is the re-
ractive index profile

N�r� = ���f2 + 1�/f2� − �g/f2��r/a�2�1/2 �36�

or r�a for the two-parameter family f and g. The TE par-
ial wave scalar radiation potential is still a Whittaker
unction, since the radial dependence of N2�r� is still r2.
or g=1, this new profile reduces to the modified Luneb-
rg lens studied in this series of papers. For g�1 the ef-
ective potential is discontinuous at r=a causing both in-
ernal and external reflection at the surface. For g�1, the
entrifugal barrier outside the sphere is raised with re-
pect to the value of the radial potential inside. The re-
ulting sphere may give rise to a much narrower set of
DRs, since the centrifugal barrier is now more promi-

ent. For g�1, the effective potential inside the sphere is
aised with respect to its value outside. This can lead to a
entrifugal barrier lying totally inside the sphere with a
ocally parabolic well lying further inside. It would be of
nterest to determine whether additional novel scattering
henomena occur if the modified Luneburg lens of Eq. (2)
s itself further modified, as in Eq. (36).
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