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The parallel iteration procedure for computing scattering by a multilayer sphere is described. The procedure
uses a successive doubling strategy applied to four sets of multiple-scattering amplitudes, which is reminiscent
of the fast Fourier transform (FFT) algorithm. The procedure is then used to calculate scattering of a plane
wave by a modified Luneburg lens. The evolution of the transmission rainbow for the Luneburg lens parameter
f>1 into an orbiting ray for f=1 and into a series of morphology-dependent resonances for <1 is studied, and
various features of the scattered intensity as a function of scattering angle are commented on. It is found that
some resonances are formed without the presence of an exterior centrifugal barrier to confine them. © 2008

Optical Society of America
OCIS codes: 080.2710, 260.5740, 290.4020.

1. INTRODUCTION

This is the third and final paper in a series that examines
scattering of a plane wave by a sphere whose refractive
index profile is that of either a Luneburg lens or a modi-
fied Luneburg lens. This example of electromagnetic scat-
tering by a radially inhomogeneous sphere is both rich in
scattering phenomena and simple in that the analysis of
many of the phenomena in ray theory is analytically ex-
actly soluble. In [1], transmission through the sphere was
considered in ray theory, and arguments were outlined
suggesting that both external reflection from the surface
and transmission following a number of internal reflec-
tions from the surface vanish in the A — 0 limit. In [2], the
transverse electric (TE) polarization was examined semi-
quantitatively in wave theory by analyzing the effective
radial potential of a partial wave, and an explanation was
given as to why the transverse magnetic (TM) polariza-
tion is not amenable to such an analysis. In this paper all
scattering processes are considered in wave theory for
both polarizations. Rather than numerically computing
the exact interior partial wave radial functions for the in-
homogeneous sphere and then using them to obtain the
partial wave scattering amplitudes, the modified Luneb-
urg lens is instead approximated by a finely stratified
multilayer sphere, and the multilayer sphere scattering
problem is solved numerically.

There are two procedures for computing the partial
wave scattering amplitudes of a multilayer sphere: (i) the
progressive iteration procedure [3—9] and (ii) the parallel
iteration procedure [10]. The progressive procedure is
valid for any number of layers M. One starts by calculat-
ing single-scattering partial wave amplitudes at the core,
then iteratively progressing outward toward the sphere
surface, adding on one layer at a time and recalculating
the amplitudes. But in doing this, Riccati—Bessel func-
tions and Riccati-Neumann functions must be evaluated

1084-7529/08/122991-10/$15.00

for small arguments comparable to the core size and large
partial wave numbers comparable to the overall sphere
size. Such computations are prone to numerical overflow
and underflow problems, especially when these results
are combined over and over again as the iteration
progresses outward toward the sphere surface [3]. In
spite of these potential numerical difficulties, stable and
highly accurate progressive iteration computer programs
have been written [3-9] that compute scattering by a
multilayer sphere, carefully avoiding the overflow and un-
derflow problems.

On the other hand, the parallel iteration procedure
starts by calculating four single-scattering amplitudes at
every interface of the multilayer sphere, assuming the
number of layers is M=2F. These four amplitudes are
then combined together at pairs of adjacent interfaces
from the core of the sphere to its surface [10]. Adjacent
pairs of the four new amplitudes are again combined to-
gether iteratively until the four amplitudes for the entire
sphere are obtained. This combination at pairs of inter-
faces performed in parallel from the core to the surface is
reminiscent of the successive doubling strategy of the fast
Fourier transform (FFT) algorithm [11]. Both the progres-
sive and parallel iteration procedures require M combina-
tions of each scattering amplitude. The progressive proce-
dure uses the innermost part of the sphere for more
combinations than the outermost part, whereas the par-
allel procedure uses all parts of the sphere equally in com-
binations. Although parallel iteration cannot be applied to
such relatively simple systems as M =3 or M =5, it pro-
vides a robust and efficient alternative to progressive it-
eration when a sphere with a radially inhomogeneous re-
fractive index profile is modeled as a finely stratified
multilayer sphere having M =2F layers.

The body of this paper is organized as follows. In Sec-
tion 2 the geometry is summarized. In Section 3 the de-
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tails of the parallel iteration procedure are given, and the
way in which it avoids potential numerical overflow and
underflow difficulties is described. In Section 4 numerical
results are presented and interpreted for (i) the intensity
as a function of scattering angle for various values of the
modified Luneburg lens parameter f, and (ii) the size pa-
rameters of morphology-dependent resonances (MDRs)
that occur for f<1. In each case special note is made to
the ways in which Luneburg lens scattering differs from
that of a homogeneous sphere. Finally, in Section 5 a few
general conclusions are presented.

2. GEOMETRY AND NOTATION

Consider a sphere of radius a centered at the origin of co-
ordinates and composed of M concentric layers of equal
width A=a/M. An individual layer is denoted by j, where
1<j<M. The core is layer 1, the outermost layer is M,
and the medium exterior to the sphere is layer M +1. The
radius of layer j is a;=jA, and the overall sphere radius is
ay=a. The continuous refractive index profile N(r) of a
radially inhomogeneous sphere is discretized to a con-
stant refractive index N;=N(a;j—A/2) in each of the layers,
and N; is assumed in this paper to be real. The interface
between layers j and j+1 is called the j, j+ 1 interface. The
free-space wavelength of the electromagnetic plane wave
incident on the multilayer sphere is \, the wave number
is k=27/\, and the exterior and interior size parameters
of the j, j+1 interface are

Xjjs1=Nj1ka;, (1a)

YJ-J+1=]\/'jkaj. (lb)
respectively. The refractive index profile of a modified
Luneburg lens is

N() =[1+£* - (r/a)*1*If (2)

for r<a.

3. PARALLEL ITERATION PROCEDURE

A. Factorization of the Multilayer Sphere Amplitudes
In the parallel iteration procedure for calculating scatter-
ing by a multilayer sphere [10], four basic partial wave
amplitudes N,,, D,,, P,,, and @,, for each partial wave num-
ber n are used to construct the partial wave scattering
amplitudes a,, and b,,. In order to avoid overflow and un-
derflow problems, these amplitudes are factored into
terms that rapidly increase or decrease as n increases and
terms that remain relatively well behaved. When a,, and
b, are finally obtained in the last step of the procedure,
all the rapidly increasing and decreasing factors are
found to cancel, leaving only ratios of the well-behaved
terms. Thus only the well-behaved terms need be numeri-
cally computed. Once the partial wave scattering ampli-
tudes are obtained, the scattered intensity is computed in
the standard way [12]. It should be noted that this can-
cellation of the rapidly increasing and decreasing factors
does not occur for the interior amplitudes ¢, and d,,.

As a first step of the parallel iteration procedure, three
functions that appear naturally in the factorization of the

James A. Lock

amplitudes are formed from ratios of Riccati—Bessel func-
tions ¢,(w) and Riccati-Neumann functions y,(w),

E,(w) = i, (w)/i,(w), (3a)
F,(w) = x,(w)/x,(w), (3b)
G,w) = ¢, w)/x,w), (3¢)

where the prime symbol indicates a derivative with re-
spect to the argument of the function. For small w corre-
sponding to the radius of a layer near the core and a large
partial wave n corresponding to the overall sphere radius,
these functions have the asymptotic behaviors [13]

E,(w)— (n+1D/w, (4)
F,(w)—-nlw, (5)
G(w) — (= 1) (/22" [w/(n + 1/2) . (6)

As n>w, both E, and F,, only slowly increase, but G,, rap-
idly decreases. However, the ratio

G,(W)/G,(w + &) — (1 - e/w)?™*1, (7

which appears in the factorization of the amplitudes,
slowly decreases as long as e<w.

Following [10], the factorization of the amplitudes used
to construct a,, and b,, proceeds in four steps. (i) First, four
basic single-scattering amplitudes are calculated at each
interface from the core of the multilayer sphere to its
outer surface. (ii) Next, one combines the amplitudes of
two adjacent interfaces together to form four basic
multiple-scattering amplitudes for each of the adjacent
interface pairs from the core to the surface. (iii) This pro-
cedure of combining together the four basic amplitudes at
pairs of adjacent clusters of interfaces is repeated until
one obtains a single set of the four basic multiple-
scattering amplitudes for the entire M=2F layer sphere.
(iv) Finally, two of the final four amplitudes are used to
form the partial wave scattering amplitudes a, and b,,.
For notational simplicity, in the remainder of this section
the partial wave number is omitted and the TE or TM po-
larization state is implicit in the values of a and B, which
are defined as

a=N; for TE,

=N for TM, (8a)
= J+1 fOI‘ TE,
=N; for TM. (8b)

The following development switches back and forth
among the specific examples of the homogeneous sphere,
the coated sphere, etc., and the totally general case of the
M layer sphere with an arbitrary refractive index profile.
The four basic single-scattering amplitudes for the j, j+1
interface are [10]

Njja= aw()(j,ﬁl) ‘p/(Yj,ﬂl) -By ()(j,j+1)‘//(Yj,j+1), (9a)
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Djji1=axX; ;)0 (Y ju1) = B X jr ) (Y ji1),  (9b)
P = ap(X; )X (Y je1) = BY (X s XY j41),  (9¢)

Q) jv1= ax(X; j )X (Y j11) = BY' (X jr DX (Y1) . (9d)
Equations (9a)—(9d) can be factored as
N1 = XX 0 )XY 421G X 1) G(Y i) 1, (10a)

D; i1 = XX s )XY} 1) G(Y j11)d; a1 (10b)
P; 1= XX )XY} 1) G(X; ji1)Dj 1 s (10c)
Q)1 = XX j DX (Y} j41)q; 415 (10d)
where
njj1=ab(Y} 1) = BEX 1), (11a)
djji1=aE(Y};.) - BF(X; 1), (11b)
Djjs1=aF(Y; ;) - BEX 1), (11c)
qjj+1= aF(Yj,j+1) - BF(AXj,ﬁl) . (11d)

The terms x(Xj;,1)x(Yj;+1) can be considered as common
factors in Eqgs. (10a)—(10d) and at the end of the calcula-
tion will cancel. Thus only n; .1, djjr1, Pjjs1> @jj+1, and
some of the G factors need be computed. As an example of
this cancellation, a homogeneous sphere has M=1, j=1,
and the partial wave scattering amplitudes are

Ap,b, = N1o/(N1g+1D1). (12)

Substituting Egs. (10a)—(10d) into Eq. (12), the factors
xX12)x(Y12) cancel, as also does G(Y3), and one has

ay,b, = GX19)n19/[G(Xq9)n 19 + id 5] (13)

Proceeding to the next step, for the specific case of a
coated sphere with M=2 and j=1,2, the four basic
multiple-scattering amplitudes Nyg3, D123, P123, @123 are
obtained [10] from combinations of the four basic single-
scattering amplitudes Ny, D19, P19, @12 at interface 1,2
and Nas, D3, Pas, Qo3 at interface 2,3. One has

N123 = D12N23 - N12P23 = G(YIQ)G(YQS)G(X23)n123’

(14a)

D193=D19Dg3— N19Q23 = G(Y12)G(Yo3)d 103, (14b)

P13 =Q19N93 — P1oPo3 = G(Y33)G(X23)P 123, (14c)

Q193 = Q12D 93 — P1oQ23 = G(Y33)q 123, (14d)
where

N193=d1oNg3 — N19023G(X19)/G(Yo3), (15a)

d 193 = dyado3 — 1199 23G(X19)/G(Yo3), (15Db)

D123 = Q12793 — P12D23G(X12)/G(Y33), (15¢)
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G123 = Q12d23 — P12923G(X12)/G(Y 53). (15d)

The term G(Y,3) again can be considered as a common
factor in Eqgs. (14a)—(14d) and at the end of the calculation
will cancel. The partial wave scattering amplitudes are

@p,b, = N1gg/(N193 +1D123). (16)

Substituting Eqs. (14a)—(14d) into Eq. (16), the factor
G(Y19) cancels as well, and the coated sphere partial wave
scattering amplitudes become

@, 0, = G(Xo3)n193/[ G (Xog)n 193 + id 93] ()]

Again, only ny93, d123, P123, 9123, and G(Xs3) need be cal-
culated. For the case of a general multilayer sphere, the
multiple-scattering  amplitudes Nj_q;j,1, Dj_1jj+1,
P;_1jj+1, Qj_1,,+1 for the combination of the j-1,;j and
J,j+1 interfaces analogous to Eqs. (14a)-(14d) are ob-
tained in an identical way from combinations of the
single-scattering amplitudes N;_j, Dj_q;, Pj_1, @j_1, at
interface j-1,j, and Nj .1, Dj i1, Pjjs1, @jj+1 at interface
J,j+1. There are now half as many amplitudes as there
were in the previous step, and the term G(Y};,1) can be
considered as a common factor to N;_1;j.1, Dj_1jj+1,
P;_1jj+1, Qj_1,j+1 that will cancel at the end of the calcu-

leition.

In like manner, pairs of adjacent two-interface ampli-
tudes can be combined together in parallel from the core
of the sphere to the surface to form four-interface ampli-
tudes in exactly the same way as pairs of adjacent single-
interface amplitudes were combined in Eqs. (14a)—(14d)
to form two-interface amplitudes. There are again half as
many of these as there were in the previous step, and
common factors of G(Y) will cancel at the end of the cal-
culation. Adjacent pairs of these can be combined together
in a generalization of Eqs. (14a)—(14d) in parallel from the
core to the surface to form eight-interface amplitudes
with common G(Y) factors that will cancel, etc. This pro-
cedure is continued until one set of composite partial
wave amplitudes N1 p741, D12, m+1, Pia.ms1, Q12,0041 fOr
the entire M =2F layer sphere have been formed. They are
factored into a large number of rapidly varying G(Y)
terms and the well-behaved terms nis a1, d12. m+1
P12 M+1> @12, m+1- The partial wave scattering amplitudes
for scattering by the entire multilayer sphere are [10]

@0, =Nig a1/ N1o a1 + 1D 12 pre1)- (18)

Substituting in, the rapidly varying terms cancel, and one
obtains

a,,b, = G(XM,M+1)”12...M+1/[G(XM,M+1)7L12...M+1 +idya pal-
(19)

Thus only nig yi1, di2.ms1, Piz.m+1, Qiz.m+1, and
G(Xj1,p1+1) need be computed. This procedure is valid for

any refractive index profile N(r) »N; with 1<j=< 2P,
Equations (9)-(19) warrant a number of comments con-
cerning the way in which the factorization process avoids
numerical overflow and underflow problems. These com-
ments are perhaps best illustrated in terms of a specific
example. Consider an M =128 layer sphere of radius a
=5.12 ym illuminated by light with wavelength \
=0.512 um. The thickness of each layer is A=0.04 um.
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The sphere is assumed to be a Luneburg lens with f=1.0
and N(0)=1.414, as in Eq. (2). The overall size parameter
of the sphere is Xj55199=62.83. The convergence of the
partial wave sum as n— is determined by the simulta-
neous faster-than-exponential increase in y,(ka) in the
denominator of a,, and b,, and the faster-than-exponential
decrease in ¢,(ka) in the numerator, independent of the
interior functions F,(ka) and G,(ka) of [2]. This is be-
cause the second set of interior functions U,(ka) and
V., (ka) of [2] do not occur in a, and b,. Thus the largest
partial wave n,,, of the sum required for single-precision
accuracy is

Nmax = 1+ X798 109 + 4-3(X128,129)1/3 =80. (20)

The combination of the smallest argument X;9=0.694 and
largest partial wave number n=80 gives [13] g((0.694)
~107157 and yg((0.694) =~ 1055, But the individual single-
interface amplitudes of Egs. (11a)—(11d) contain only the
functions E and F, which never increase beyond 10? for
this example. Similarly, Gg((0.694)~107322, But since
only ratios of the G functions appear in Eqs. (15a)—(15d),
the smallest ratio is Ggy(X79)/Ggo(Yes) =104, which is
more manageable. Finally, since X3 199 is the overall size
parameter of the sphere, #,(X195129) and x, (X195 129) are
computed using the usual procedures of double-precision
upward recursion and downward recursion [14], respec-
tively, to form G(X795 129) in Eq. (19).

B. Numerical Evaluation of E,(w), F,(w), and
Gp(W)/Gy(v)

The function E, (w) is the logarithmic derivative of i, (w),
and there are widely publicized routines for computing
this for a real refractive index, as assumed here, using
downward recursion [6,15]. For example,

E,_(w) = (n/w)-1U[E,(w) + (n/w)] (21)
for [ <n<ngy,, with

Ngtart = Mmax + 155 (223)

B, 1(@)=0. (22b)

The function F,(w) is found to be stable when computed
using upward recursion. Starting with

Fo(w) = —tan(w), (23)
the upward recursion is
F,(w)=-n/w) +[(n/w) - F,_;(w)]. (24)
The ratio G,(X;_1;)/G,(Y;;.1) is also found to be stable
when computed using upward recursion, assuming that
En(Xj_L,’), En(Yj,,'n), Fn(Xj_L,'), and Fn(Yj,j+1) have already
been separately computed. Starting with

GoX;_1)/Go(Y;j,1) = tan(X;_y j)/tan(Y 1),  (25)

the upward recursion is
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G X1 G (Y1) = Gy Ky N (/X1 ) + F (X))
X[(n/Yjo1) + B (Y j01) G4 (Y i)
X[(n/X;_1 ) + E,(X;_1 )L (n/Y j11)
+F, (Y, (26)

The ratio of the G functions appearing in the generaliza-
tion of Eqgs. (15a)—(15d) is calculated for the following val-
ues of j. Let T be the iteration number for the M=2" layer
sphere, where 1<T<P-1, and let K be an integer such
that 0<K=<2P-T_1. When the amplitudes n, d, p, g for
the T iteration are formed by combining pairs of the pre-
viously obtained amplitudes n, d, p, g for the T-1 itera-
tion, as in Eqgs. (15a)~(15d), the ratio G,(X;_1,)/G,(Y} ;1)
is calculated for

j=2T"141+K(@2D). 27

The integers K span the range from the sphere’s core to
its surface.

4. RESULTS

A. Intensity as a Function of Scattering Angle

This subsection contains a catalog of the various pre-
dicted phenomena when the scattered intensity is plotted
as a function of scattering angle. Figure 1 shows I(6) for a
Luneburg lens with f=1.0 and radius ¢=8.117 um and
with the wavelength of the incident light A=0.51 um.
This corresponds to the size parameter ka=100.0. The
Luneburg lens was divided into M=27=128 layers of
width A=0.0634 um, and the parallel iteration procedure
was used. Since A<\, the sphere is considered finely
stratified, and subdividing the sphere further revealed no
additional structure of I(6). The intensity computed for
ka=60.0 was found to be identical to that of [8], where the
progressive iteration procedure was used. The scattered
intensity for the TM polarization is seen in Fig. 1 to be
almost identical to that for the TE polarization. This is
not surprising for the following reason. In ray theory, the

10° j T T Y T Y T T T v T
. 10'E
“
=
3 -
g 10° | ﬂ
§ 3 i
s
>
2 10
=
2
=
10' | Ik
100 n 1 " 1 " 1 1 1 n 1 n
(] 30 60 90 120 150 180

Scattering Angle (degrees)

Fig. 1. TE (solid curve) and TM (dashed curve) intensity as a
function of the scattering angle 6 for a Luneburg lens with f
=1.0, ¢=8.117 um, and A=0.51 um computed for an M=128
layer sphere using the parallel iteration procedure.
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greatest difference between TE and TM scattering at an
interface occurs in the vicinity of the Brewster angle
where all of the TM light is transmitted and none is re-
flected. Two well-known examples of this for scattering of
a plane wave by a homogeneous water sphere with n
=1.333 are as follows. TM external reflection vanishes
when 0#=73.8°, and TM internal reflection vanishes when
the angle of incidence on the sphere surface from the in-
side is 6,=36.9°, corresponding to an incident ray impact
parameter of f=52.9°. Since this is close to the Descartes
impact parameter of the first-order rainbow, Br=59.4°,
the first-order rainbow of a homogeneous sphere is domi-
nantly TE polarized. For scattering by a modified Luneb-
urg lens in the finely stratified model, negligible light is
reflected at each interface regardless of the angle of inci-
dence, except at near grazing incidence, since the refrac-
tive index difference between two adjacent layers is small.
Thus the Brewster angle occurs when the angle of inci-
dence on a layer is near 45°. This 45° incidence condition
giving total transmission of the TM ray occurs, at most,
twice on a curved ray trajectory inside the sphere, and
transmission is otherwise expected to be near total for
both polarizations at every other point. Thus TE and TM
scattering should be quite similar. For f/=1.1 and 0.9, the
scattered intensity for the TE and TM polarizations was
also computed and found to be nearly identical.

As was discussed in [2], the abrupt transition of the
scattered intensity from the ray theory illuminated region
to the shadowed region is smoothed in wave theory. The
physical optics model predicts that in the vicinity of the
weak caustic corresponding to the orbiting ray, the scat-
tered intensity is

1(6) = {F () — F[A(ka/m) 112, (28)
where
F(w)= f dv exp(im?/2) (29)
0
and
6= (m/2) + A. (30)

Equation (28) is identical to a Fresnel straight-edge pat-
tern and appears prominently in Fig. 1. This is only an
approximation, however. For ka=100, Eq. (28) predicts
that the main peak of the Fresnel straight-edge pattern
should occur at 6=77.2°, whereas it is observed to occur at
0=58.2° in Fig. 1. Physically, the transition is due to ra-
diation shed by the orbiting ray. For §<58.2° the shed ra-
diation interferes with rays transmitted through the
sphere, producing the oscillations of the Fresnel straight-
edge pattern. The fine oscillations in Fig. 1 for 6>100°
are the interference of the shed radiation of the counter-
propagating orbiting rays incident at the top and bottom
of the sphere. The path length difference on the surface of
the sphere of the two counterpropagating orbiting rays
should produce an interference pattern that is indepen-
dent of # and has a periodicity of Af=mn/ka=1.80°/cycle.
The oscillations in Fig. 1 for §>100° are in good agree-
ment with this prediction, having the periodicity A#
=1.82°/cycle.
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A broad glory enhancement of the scattered intensity is
evident for 6~180°. For #<60°, the fine oscillations su-
perimposed on the coarser Fresnel straight-edge oscilla-
tions are the interference of the transmitted light with
the near-forward direction diffracted light. For §<9° dif-
fraction dominates over transmission. For =9° the dif-
fracted and transmitted light of Eq. (18) of [1] have
roughly the same magnitude and destructively interfere,
producing the large dip in the scattered intensity in Fig.
1. For #>9° transmission dominates over diffraction, and
the transmission—diffraction interference becomes pro-
gressively weaker as a function of 6.

Figure 2 compares the TE intensity as a function of 6
for f=1.1, 1.0, and f=0.9, respectively, for a=8.117 um,
A=0.51 um, and M=128. For f=1.1 the predicted Des-
cartes rainbow angle of 6p=55.74° of Eq. (39) of [1] quali-
tatively agrees with Fig. 2. The rainbow supernumerary
structure is evident for 10° <#<50°. For #<10° the su-
pernumerary structure interferes with and merges into
the near-forward diffractive structure. The rainbow’s
complex ray is evident for 6>60°. The small amplitude
oscillatory structure observed for #>80° is due to inter-
ference of radiation of the complex ray of the rainbow
formed from light incident on the top half of the sphere
that has damped for less than 180° and weaker counter-
propagating radiation of the complex ray of the rainbow
formed from light incident on the bottom half of the
sphere that has damped for greater than 180°. The TM in-
tensity was also calculated for f=1.1 and f=0.9 and was
found to be nearly identical to the TE intensity of Fig. 2.
In particular, the transmission rainbow for f=1.1 is virtu-
ally identical for the TE and TM polarizations.

The main rainbow peak of Fig. 2 for f=1.1 decreases
into the main peak of the Fresnel straight-edge intensity
pattern of the orbiting ray when f=1.0. The rainbow su-
pernumeraries evolve into the oscillatory structure of the
Fresnel straight-edge pattern, and the rainbow’s complex
ray grows into radiation continuously shed by the orbiting
ray. Since the scattering angle of the orbiting ray in Fig. 1

10 Y T r T r T v T ¥ T

10°

10° Hi
10 B

10°

Intensity (arbitrary units)

10

10’

10°

0 30 60 90 120 150 » 180
Scattering angle (degrees)

Fig. 2. TE intensity as a function of the scattering angle 6 for a

modified Luneburg lens with f=0.9 (dashed curve), f=1.0 (solid

curve), and f=1.1 (dotted—dashed curve) for a=8.117 um and A

=0.51 um computed for an M =128 layer sphere using the paral-
lel iteration procedure.
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is larger (i.e., #=90° in ray theory) than that of the rain-
bow ray in Fig. 2 (i.e., §5=55.74°) and the radiation shed
by the orbiting ray for f=1.0 falls off more slowly than
does the rainbow’s complex ray for f=1.1, the interference
pattern in Fig. 1 for #>90° has both a larger baseline and
a larger modulation depth than does the corresponding
interference pattern for f/=1.1 in Fig. 2.

For f=0.9 in Fig. 2, the orbiting peak has largely dissi-
pated and the falloff of the intensity for 6>90° is slower
than for f=1.0 in Fig. 1. Although rays are now transmit-
ted through the sphere for this angular range, a large am-
plitude interference pattern again having the periodicity
A#=1.82°/cycle occurs in Fig. 2, signaling the presence of
at least one more ray in this angular region. The origin of
this additional ray can be understood as follows. For
<1, the grazing incidence ray of Fig. 2(b) of [1] exits the
sphere at 6=180° tangent to its surface. This tangency at
only one point at the exit likely causes electromagnetic
surface waves [16] for 6 larger than 180° that contribute
to the interference pattern. This interpretation is qualita-
tively supported by the fact that a geometrical ray and a
counterpropagating surface wave should have nearly the
same amplitude for # near 180° and should produce the
type of large modulation depth interference pattern ob-
served in Fig. 2. Finaly, the glory enhancement is again
evident in Fig. 2 for #=180°, and the transmitted light
again interferes with diffracted light at small angles.

B. TE and TM Resonances

Figures 3(a) and 3(b) show the scattering efficiency as a
function of sphere radius for f=0.9, A=0.51 um, and M
=128. The TM efficiency has been vertically offset from
the TE efficiency by 0.10 for clarity. The optical theorem
[17] relates the scattering efficiency to the total scattering
amplitude in the forward direction, which here is com-
posed of diffraction plus transmission. The coarse oscilla-
tions in the scattering efficiency in Fig. 3(a) are due to
diffraction—transmission interference. From Eq. 33 of [1]
the ray transmitted through a modified Luneburg lens in
the forward direction acquires a phase of

Ourans = ka + ka[ (2 + D/flarcsin[ (2 + 1)"Y2] - 7, (31)

and the diffracted ray in the forward direction acquires a
phase of [18]

Qi = 2ka + m/2. (32)

Transmission and diffraction constructively interfere in
the forward direction when

Ptrans ~ Pdiff = 2mP, (33)

where P is an integer. For f=0.9, the sphere radii for con-
structive interference predicted from Egs. (31)—(33) are
a=4.279 pm, 5.023 um, 5.768 um, 6.512 um, and
7.256 um, which closely agree with the results of Fig.
3(a). Equations (31)-(33) were found to also accurately de-
scribe the coarse oscillations in the scattering efficiency
for f=1.0 and f=1.1, which was free of MDR structure.
The sequence of small peaks superimposed on the
diffraction—-transmission interference in Fig. 3(a) and
which are shown in more detail in Fig. 3(b) are the first
radial order (i.e., S=0) MDRs. The size parameter of
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Fig. 3. (a) Scattered efficiency ¢ as a function of sphere radius
for a modified Luneburg lens with f=0.9 and A=0.51 um. The ef-
ficiency for the TM polarization has been vertically offset by Ae
=0.1 for clarity. (b) TE scattered efficiency ¢ for a smaller range
of sphere radii illustrating the S=0 resonances in the partial
waves n=48 through n=>53.

these resonances is given in Table 1 and was numerically
determined by locating the value of ka for a given partial
wave, where a,, or b, took on the maximum value of 1.0
for N(r) real. The full width at half-maximum of the reso-
nances is about Aka=0.37, and the uncertainty in the
resonance positions due to the numerical search employed
is Aka==0.006. It is felt that these few resonances, and
the resonances for f=0.75 considered below, are represen-
tative of resonances of a modified Luneburg lens. An esti-
mate of the resonant size parameter based on the loca-
tions of bound states in the locally parabolic effective
radial potential inside the sphere is [2]

ka = (n+2S +3/2)[2f/(f2 +1)], (34)

where §=0,1,2,3... is the radial order. Contrary to the
MDRs of a homogeneous sphere [19-21], the size param-
eters of the TE and TM resonances of a modified Luneb-
urg lens are found to be nearly identical. In Table 1, the
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Table 1. TE and TM Resonant Size Parameters for
=0.9, A\=0.51 um, and M =128 as a Function of the
Partial Wave Number n®

n (ka)TE (ba)™ (ka)™ of Eq. (34)
48 49.600 49.613 49.226
49 50.586 50.598 50.221
50 51.584 51.584 51.215
51 52.569 52.582 52.210
52 53.555 53.567 53.204
53 54.553 54.553 54.199
54 55.538 55.551 55.193
55 56.524 56.536 56.188

“The numerical uncertainty in each size parameter is +0.006. The predicted TE
size parameters of Eq. (34) are given in the final column.

size parameters of the TM resonances are larger than the
TE resonant size parameters by Aka=0.009 on average,
whereas for a homogeneous sphere with n=50, S=1, and
N=1.47, the difference is [20] Aka=0.469. The differing
size parameters of TE and TM resonances of a homoge-
neous sphere are due to the fact that (i) the interior func-
tions for both polarizations are combinations of Riccati—
Bessel functions and Riccati-Neumann functions and
that (ii) the TE and TM boundary conditions differ. This
difference of boundary conditions causes an S-radial or-
der MDR (with S=1,2,3... for a homogeneous sphere) for
the TE polarization to have S humps inside the sphere,
whereas the TM resonance has S+1 humps inside [22].
On the other hand, for a modified Luneburg lens, (i) the
interior functions F,(kr) and G, (kr) of [2] for the TE and
TM polarizations differ, but (ii) since the interior func-
tions are functions of kr rather than Nkr and N(a)=1, the
TE and TM boundary conditions to be matched at the
sphere surface become identical. Thus one can conclude
that differences in boundary conditions are more impor-
tant than differences in radial functions for producing the
differing size parameters of TE and TM resonances. The
estimated size parameters of Eq. (34) are on average
Aka=0.357 larger than the values in Table 1. But the av-
erage estimated distance between that adjacent TE reso-
nances of Eq. (34) is Aka=0.994, which agrees well with
the computed average distance of Aka=0.989 between the
TE resonances in Table 1. These comparisons indicate
that Eq. (34) is a reasonably accurate first-order approxi-
mation of the positions of the resonances of a modified
Luneburg lens.

Perhaps the most novel feature of the modified Luneb-
urg lens MDRs is their value of

X=n+1)/(ka)?. (35)

As was discussed in [2], for X>1 a partial wave radial
function must tunnel through the centrifugal barrier to
get to the interior well and be resonantly captured by it.
For a homogeneous sphere, this is exactly what occurs
and all resonances have X>1 (see, for example, Tables 1
and 2 of [20]). But for a modified Luneburg lens, the
MDRs of Table 1 have an average X value of 0.960; i.e.,
the MDR is formed before the centrifugal barrier has
grown high enough to require tunneling. The fact that X
<1 for these resonances can be qualitatively understood
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using the effective potential analysis of [2]. The effective
radial potential for the TE resonance of f=0.9 and n=50
at ka=51.584 is shown in Fig. 4. In the language of quan-
tum mechanics, an attractive potential supports a num-
ber of bound states whose energies are various heights
above the bottom of the potential well. The ground state
energy of a harmonic oscillator lies quite close to the bot-
tom of its parabolic well and is significantly closer to the
bottom than is the ground state of either an infinite
square well or an Airy well. When the effective potential
approach is applied to light scattering, the partial wave
number is considered fixed and the incident partial wave
has a fixed energy. As the size parameter of the scatterer
is varied, the effective potential and its bound states move
up or down in concert. In the approximation considered in
[2], when the energy of one of the bound states coincides
with the fixed energy of the partial wave, an MDR is
formed. Such is the case in Fig. 4, the S=0 ground state
energy of the locally parabolic potential well inside the
sphere coincides with the fixed energy of the n=50 partial
wave. In the trajectory model of ray theory, the corre-
sponding ray is incident on the sphere near its edge and
penetrates into it. As it enters the sphere its radial veloc-
ity immediately slows and remains relatively small from
the sphere surface to the classical turning point at r/a
=0.835 and then back to the surface again. The ray
spends slightly more time inside the sphere than it would
if the sphere were slightly larger or smaller. The en-
hanced scattering of an MDR is associated with the longer
interaction time. This resonance occurs even though there
is no centrifugal barrier straddling the sphere surface,
holding the partial wave in the interior well.

Figures 5(a) and 5(b) show the TE scattering efficiency
as a function of the sphere size parameter for f=0.75, \
=0.51 um, and M=128. In addition to a spectrum of S
=0 resonances, there is now a spectrum of very weak S
=1 resonances. Again the size parameters of the TE and
TM resonances nearly coincide. For example, for the par-
tial wave n=50, the TE resonance with S=0 occurs at
ka=49.403, giving X=1.045. The S=1 resonance occurs at
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Fig. 4. Effective radial potential of the partial wave n=50 as a
function of r/a for ka=51.584 corresponding to the S=0 reso-
nance. The effective energy of this size parameter is denoted by
the horizontal line U 4=2661.
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Fig. 5. (a) TE scattered efficiency ¢ as a function of sphere ra-
dius for a modified Luneburg lens with f=0.75 and A=0.51 um.
(b) TE scattered efficiency ¢ for a smaller range of sphere radii
illustrating the S=0 resonances in the partial waves n=>50
through n=56.

ka=51.510, giving X=0.961. For the TM polarization, the
resonances occur at ka=49.415 and ka=51.522. The full
width at half-maximum of the S=0 resonances has nar-
rowed to Aka=0.25, and the uncertainty in the resonance
positions due to the numerical search employed is again
Aka=+0.006. The S=0 resonances appear prominently in
Fig. 5(b), and each of the much weaker S=1 resonances
appear as a shoulder on the right side of each S=0 peak.
The effective potential wells for the two TE resonances
are shown in Figs. 6(a) and 6(b). The S=0 ground state of
the locally parabolic well now occurs when the well and
its bound states have been raised upward in Fig. 6(a) so
that a small centrifugal barrier is present for 0.965
<r/a<1.022. It is suggestive to attribute the narrower
width of the S=0 resonances here to the presence of the
weak centrifugal barrier for f=0.75 that was absent in
Fig. 4 for f=0.9. The S=1 first excited state occurs higher
in the well, so the well and its bound states must be low-
ered in Fig. 6(b) in order to make the first excited state
coincide with the fixed energy of the incident partial
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Fig. 6. Effective radial potential of the partial wave n=50 as a
function of r/a for (a) ka=49.403 corresponding to the S=0 reso-
nance and (b) ka=51.510 corresponding to the S=1 resonance.
The effective energy of this size parameters is denoted by the
horizontal line U.4=2441 in (a) and U.4=2653 in (b).

wave. As the potential well is lowered, the peak of the
centrifugal barrier now falls below the energy of the inci-
dent partial wave and no tunneling occurs. The size pa-
rameters of the TE resonances estimated from Eq. (34)
are ka=49.440 for S=0, which is higher than the ob-
served TE size parameter by Aka=0.037, and ka=51.360
for S=1, which is lower than the observed size parameter
by Aka=0.150. Equation (34) is again seen to be reason-
ably accurate, with its accuracy increasing as the radial
order decreases, where the MDR is trapped in a deeper
interior well behind a higher centrifugal barrier. The
same trend is followed by the first-order estimate of the
resonant size parameters of a homogeneous sphere [20].
The widths of the Luneburg lens MDRs examined here
are orders of magnitude larger than the widths of the ho-
mogeneous sphere MDRs. For a homogeneous sphere,
three radial orders of resonances occur [20] for n=50. For
S=1, the full width at half-maximum is Aka=~10% for
S=2 it is Aka~10%, and for S=3 it is Aka=10"2. It is
likely that the cause of the orders-of-magnitude difference
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in the width of Luneburg lens MDRs and homogeneous
sphere MDRs results from the great difference between
the spheres’ effective radial potentials. A modified Luneb-
urg lens has a locally parabolic effective potential, either
without a centrifugal barrier or with only a minimal one.
The Airy effective potential of a homogeneous sphere has
a much larger centrifugal barrier adjacent to a refractive
index discontinuity. It is known that as a homogeneous
sphere acquires an imaginary part to its refractive index,
the width of the resonances increases. Similarly, it would
be of interest to study the properties of MDRs for a num-
ber of very different effective radial potentials in order to
determine how the potential shape affects the resonances’
properties.

5. CONCLUSIONS

Although electromagnetic scattering of a plane wave by a
homogeneous sphere has been studied extensively for the
last century, scattering by more complicated objects such
as spheroids, homogeneous spheres having a number of
interior inclusions, and radially inhomogeneous spheres
have received less study. A question of great general in-
terest is the following. Putting aside the question of sphe-
roids and homogeneous spheres with inclusions, does
scattering by a sphere with a radially inhomogeneous re-
fractive index provide only a perturbation on what one
sees for scattering by a homogeneous sphere, or do new
scattering phenomena now make their presence known?
The characterization [23-25] of droplets of volatile liquids
having evaporation at the surface by various optical tech-
niques assumes the perturbation point of view. If a drop-
let’s refractive index rapidly decreases near the surface,
the one-internal-reflection rainbow continues to exist in
its usual form. But the rainbow scattering angle and su-
pernumerary periodicity change in response to the refrac-
tive index decrease near the surface. Similarly, MDRs
continue to exist in their usual form, but the resonant size
parameter and width change their values slightly [26,27].
Measurement of the rainbow or MDR shifts can be used
as a diagnostic to characterize various physical properties
of the droplet being studied. But if the droplet shape or
refractive index variation becomes large enough, new
phenomena occur as well. As an example for the case of
shape perturbations, if a homogeneous sphere is distorted
into a spheroid and the aspect ratio becomes large
enough, the rainbow evolves into a hyperbolic umbilic
caustic [28]. Similarly, the axial glory caustic evolves into
an astroid as the spherical symmetry of the scatterer is
broken [29]. Also, an MDR splits into a family of reso-
nances with differing azimuthal mode numbers [30]. For
a sphere with certain radially inhomogeneous refractive
index profiles, two or more one-internal-reflection rain-
bows can occur [31], and the structure of the glory can be-
come more complicated [32].

This set of three papers addresses the above-posed
question for the refractive index profile of a modified
Luneburg lens. Many of the phenomena of scattering by a
homogeneous sphere continue as before. But a number of
new effects occur as well. Since N(r)=1 inside the sphere
as r—a, internal and external reflection at the surface
are minimal at best. The only way to attribute part of the
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scattering to internal and external reflection is to redefine
these processes from a multiple-scattering point of view,
using one of the forms of the multilayer sphere Debye se-
ries. A transmission rainbow now occurs virtually identi-
cally for both the TE and TM polarizations, and all of its
details are, surprisingly, exactly soluble in ray theory.
One can come very close to the conditions for classical or-
biting for =1, and with a more complicated refractive in-
dex profile one could exactly achieve the orbiting condi-
tion. Finally, MDRs can occur without having a refractive
index discontinuity at the sphere surface or an external
centrifugal barrier to hold them in. The parabolic varia-
tion of the effective radial potential due to the Luneburg
lens’s special N(r) does the job itself. These effects were
identified and analyzed in this set of papers in order to
further understand and appreciate the richness of phe-
nomena that occur for electromagnetic scattering by an
object as geometrically simple as a sphere when its refrac-
tive index profile assumes some degree of complexity. An-
other analytically soluble refractive index profile is dis-
cussed in [33].

A further generalization of the Luneburg lens is the re-
fractive index profile

N(r) ={[(#* + VI - lf) (rla)®} (36)

for r <a for the two-parameter family f and g. The TE par-
tial wave scalar radiation potential is still a Whittaker
function, since the radial dependence of N2(r) is still r2.
For g=1, this new profile reduces to the modified Luneb-
urg lens studied in this series of papers. For g # 1 the ef-
fective potential is discontinuous at r=a causing both in-
ternal and external reflection at the surface. For g <1, the
centrifugal barrier outside the sphere is raised with re-
spect to the value of the radial potential inside. The re-
sulting sphere may give rise to a much narrower set of
MDRs, since the centrifugal barrier is now more promi-
nent. For g>1, the effective potential inside the sphere is
raised with respect to its value outside. This can lead to a
centrifugal barrier lying totally inside the sphere with a
locally parabolic well lying further inside. It would be of
interest to determine whether additional novel scattering
phenomena occur if the modified Luneburg lens of Eq. (2)
is itself further modified, as in Eq. (36).
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