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EDITOR'S SUMMARY

Over the years, a number of theories had been submitted to explain the
colouration of metals in a colloidal state, However, none of these proved
satisfactory and it was not until 1508 that Mie proposed a theory in an exact

form.

This paper considers the simpleat case, the spherical particle, where the

particles in puspension are small compared to the illuninating wavelength.
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] INTHODUCTION

The varied celaurs exhibited by metals in the colloidal stats have, ovar
the years, bean explained in many different ways. Initially, che inclination
was very much towards the view that the metals concerned (particularly silver)
existed in several different coloured modificacions, Later, the opinion was
held that the colours could be attributed to optical resonance, This opinion
was, above all, due to F, Ehranhafti. ¥inally, J.C. Maxwell—Garnent2 haa
recently demonstrated® that the colours of colloidal metala can, if the suspended
perticles of meral ave very small, be satisfactorily explained by che theory
developed by L. Lorenz3 for optically inhomogeneous media. The theory, for a
fine metal suspension in which the dimaneions of particles are very smell in
comparison with the wavelength and alsc with the distances between particles,
gives a well=defined absorption curve which can be determined fiom the optical
constants of the metals; accordingly, although the pattern of these absorption
curves 1s quite different from the pattern of absorption curves of the solid
metals, they have nothing at all to do with resonance in the sense in which
Ehrenhaft, Wood and others use this word. Thus Mawwell-Garnect, among others,
was able, quite naturally, to derive the red colour of many gold soclutions,
which Ehrenhaft had taken to be a resonance effect, from the Lorenzian theory.
The theory explains other colours, when the particles are pressed more closely
together, and it is possible, as Maxwell-Garnett demonstrated by calculation, to
obtain ell possible cvolour tranaitions from that of the infinitely dilute metal
suspension to that of the solid metal, In this way, the intereatiug colour
changes observed by F. Kirchner and R, Zsigmondya in dried gelatine containing

colloidal gold can be explained,

in very many other cases, however, this explanetion of the strange optical
propertiey of colloidal metals so successfully applied by Maxwell-Carnett on
numerous occasions, doev not fit, FEven with very dilute solutions of one and
the vame metal, it is posgible to cbtain the most varied colours, whereas,
according to Lerenz's theory, they should always show tha same abgorption curve,
Now, on the other hand, the view advanced by Ehrenhaft concerning the resonance

of particles reats on the quite unacceptable amssumption that the metals can be

* Where iudices of refraction of gelatine-silver emulsions are concerned,
F. Kirchiner in his Leipzig dissertation, also demonstrates the validity of
Lorenz's formula as given in Ann, d, Phys., 13, 239 (1904),



regardad, from an optical atandpoinc alac, as perfact conductors. Apart from
the objections which must ba raised againat such an assumption from tha point of
view of thae thanrys, its incorractnass can be demonstrated direatly, firmtly
from the fact that sclutions containing the very smallest particles do not
predominantly reflect violet and blue diffusely and do not appaar yellowish-rad
in transmitted 1ight, but show other colours characteristic of the metal
concerned both in transmitted and in incident light; secondly, in solutiona
containing vary fine parcicles, the diffusely-scattered light has its polarisa-
tien maximum not at 120° as asserted in the theory advanced by Ehrenhaft, but at
90°, just as in tha.case of cloudiness produced by nom=-conducting materials,
where the light is almost completely polarised.

In order to answer decisivaly the queation as to whether, in colloidal
solutions of metals exhibiting different colours, various allotropic modifications
of the subatance gre present, but not in a compact form, or whether these colours
can be explained on the basis of particles having the same physical properties as
the compact metal but differing from each other only in size and shape, it is
absolutely necessary both to obtain still more experimental material and to

develop the theory in a more exact form,

For this resson, in the Greifswalder Inetitut, accurate measurements were
carried out by Herr Steubing on verious colloidal gold solutions., I have provi-
sivnally reporred the results of a few of these maasurements to the Dresden
Naturforscherversammiung. The completed work will be published in the very near

future.

The optical theory, in any case, requires to be developed in several
directions. Although, of course, metals, in general, cryastallise regularly,
predominantly in ths cctahedral foerm, it i3 neverthelass guite possible that,
upen rapid separation from solution, highly distorted crystals are formed which
are suspended in the liquid as platelecs or little bars. On ihe other hand,
very regular crystals can certainly also be formed, as observed, for example,
in the case of so-called aventurine glases with ite beautiful copper octsahedra.
The theory now makes it possible to substitute, first of all, mimple spheres for
crystais of such structure as regular octahedral, cubic and ®o on, and also for
platelets and little bars, flattened or elongated ellipsoidals. It may be
mentioned, however, that Herr Steubing has carried out certain observations
in connection with the polarisation of diffusely-scattered light which Buggest
that, in fact we are not dealing at all with spheres or aimilar simpte bodies;

I shall return to these observations in section 20,
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This paper will deal only with che simplaat case, in which apharical shapa
can he arcributed to cha particles,

2 PCLAR COORDINATES

For the saka of simplicity, we ahall consider tha threa axeas of coordinatea
(x,¥,2) to be mmberad (1,2,%). The coordinaie systen le taken to be a right-
handed one, Furthermare, lct the radius ventor of a puint (x,y,2) be denoted
by r ; let the augle formed by ¢ oaud axis ] he y and the angle of the
projecciun of ¢ on the (2,3) plune with axis 2 be ¢ (Fig,1Y, Then (r,58,¥)
are the polar coordinates of the point., The components of the electrical and
magnetic field intensity in this polar system of coordinates may be denoted by
Hr’ z",'o, ’:p and Hr, ﬁa’ Ho o It can then casily be shown that the Mawwell

(]
equations take the follewing form:

\
dk 3lr sin ¥ Hp) 3lrid)
rzsitﬁ‘k-—-E-!-AE g - Y
1 3t r 5T Yo
8! af : in ¥ [f
. Dby A ﬁfr ) a{r sin 19)
Bt s Iy dr '
i M a% N AE\ . ()(t'{!ﬂ) _ 6}1'3‘:-
gt ‘i:, or 0 ! >
- (1)
; rz - anr . 3(r sin hw) ) B(rha)
$ Y ET 613 e !
. e g iir}z i D}','ﬁ ) 3r win & }-,-'p)
T g or '
) 3?!50 ] ] (I‘h'ﬂ) Ufs'r
B N AT T % A

Here, &k, A, u are the divlectric constant, the conductivity and
permeablility in the same aystem of measurement. In a non—conducting medium,

ki = 1/v¢ » Where v s the velocity of vlectromignetic waves in the medium,

bt would be casy to estahligh, by appropriate elimination, a differential
equiation of the secomd order for hoth h} and H} wiiich would no longer contain
remaining vnkuowns, We shall deal wich this, however, only when we have trang-
formed khe equativas especialty for the probilem of unifurm oscillationa, For

this purpode we take:
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P e E .Zﬂin: ) i = Hr.2ﬂin:

¥ r r .t.c" (2)

whara Er and Hr dapand only on the coordinatas and not on the tims and
whers n {is the number of oscillations per sacond, Morsover,
2m2

2 4n

A

4 nzuk - 2ninus = {3)

and in fact here A is the wavalangth of the oscillation concerned in a vacuum,
while m is the complex index of rafraction of the medium for light of wava~
length X . In a non-absorbing medium (e.g, water), m is identical with the
veual indax of refraction; in metals, on the other hand, m = v(l - ix) , whera
v 1is the real value generally taken as the index of rafraction, and x is the

absorption ccefficient,

Finally, we introduce the following equationa:

_ inud -
= H M, ate, (4)
3-1%&?- = x |, (5)

We then obtain the following equations in which thae values E and M

occur in a quite similar way:

-
5 s e a{x gin @ Hgg i 3(xﬁﬂ)
x 8 r v %
W 3(x sin O N )
x sin ¢ Eﬂ = e T 5
A,y M
g r
Lo * oW > (6)
d{x sin 9 E) 3 {xEy)
2 ¥ b
x" sin ¥ Mr = =3 i - ;
oE 3{x sin & E\d)
’ ;
% sin O Mg = " = ’
B(XE") 3E

M, = -
¥ 9K W

-
A
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We now consider & emall apherical particle of radius  , the centrs of
which coincides with the origin of coordinates; thia is surrounded by the solvant
(e.g, watar), The field values for tha uphare and che solvant will ba distin-
guished by suffixes { and a ; the two indices of rafraction will be danotad
by m and By ¢ Whezs the permeability ia concernad, we ehall sssume that ic
in the same externally and internally; Hy =W, . The variable x jumps in

valuc at the surfzca of che sphere; ainca

2mm
21m Q an
BT b uL %e)

where A' is the wavelength in the solvent. The following boundary conditions
must be fulfilled at the surface of the sphere:

Ega = Ey; Ewa " E¢i ¥
(73
(mﬂ)a - (m‘s) i » (:‘:M\p) a - ()‘Mw) i -
3 SOLUTIONS OF THE MAXWELL EQUATIONS

In order to solve equations {6), it is simpiy necessary to apply the mathod
developed by Lord Rayleigh in the 'Theory of Saund!'. It has, for example,
already been used for other purposes on one occasion by Fr. Haaenahrlﬂ.

I shall, in following paragraphs, again give a brief derivation of the integral
in the interests of summarising, as completely zs pessible, all formulae intro-

duced in the discussion.

Ag already mentioned earlier, it is poseible, by appropriate elimination,
to vstablish an equation of second order hoth for Rr and Mr from

equations (6):

az(xzar) - 3E, ] azsr ;
D) +sin-3w Binl‘}'é-g— +-—T-—T+XE1_ ] 0 N
I 8in®® 3¢
(8)
2% (x2M 3 3\ 3 oM
r 1 3 . T | ¢ Uy
- + oy ain @ + m— + xzﬁ - 0O
sz sTn ¥ 39 ( 53-} gin’d® ¢ %

We can now divide all solutions of aquation system (6) into three Rroups,
The first group represents waves which reault from electrical vibrations of

the spherey it is characterised by:
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Tha mecond group raprasenta wavas which results from magnetic vibrations of tha
aphara, For thsse:

The third group contains all integrals of Maxwall aquations, which represant
uniform, periodic vibrations, They can be obtained by adding of Croup I and
integrals of Group LI,

Asauming that a solution of the differential equation for Er has been
found, then the remaining components corresponding to the cuse of Group I can
readily be obtainad by the following method: in the sacond and third equationa
of aystem (6), M, {s put = 0 , and valuas found for M¢ and Mg using the
¢l £rh and sixth aquations of this system are then eubstituted. This glves
{mmediately the equations which serve for the calculation of Ey and Ey from

the known value of E o« Llf now E Eﬁ and E, are known, then M0 and

@
M, can of course be found from :he last two equations of system (6). In this

way, the following equation syatem is cbtained!

E Moo= 0, )
P
axz *xEy * Tox ° i T
2 . 2
3°(x sin ¢ Ep) s 3°E, 3 () )
3:2 + x 8in Ev ol v = - - xEﬂ g

The calculation for Group 11 is carried out in a similar way. Moreover,
Er can generally be calculated as g gum of terms, each of which individually
fulfils the conditions of equation (&) and is a product of a function of x
and & function of the angle &, ¢ . The vth term will ba

: K, (x)
eV - ""i—" @9 .

K, and P must then fulfil the following two aquations!
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d2Ku Y
—=t {1 - K = 0 (10)
dx :29 ¥
- b L
ain o * teP = 0, {1
ain 0 o9 1) tin%d 307 v v
whera ¢, ¢eould be any roal or complex number, We ahall ude only such functionas
Kv any Pu for which:
e, w ovlve ) (12)
P\J is then a spherical function of the two variables &, ¢ of the whole
number order v 3 K\J is & function used as an approximation for the cylindri-

cal fusctions having a

the Follewing solution

BV .

(v)
Hﬁ

(v)
%

Thus we have Ffound
because of the Aymmictry o
M, it is uow possible to

(Hr = ) uldga:

fractional index (denominator 2).

Equations (9) now give

of the Maxwell cquations:

K (x) h
=g l’v(a,'ﬂ) .
X

| K;(x) BPU
viv + 1) ® -53_ !

i R (x) apg
viv + 1) x sin U g ' ? (M
0 r

| vax) DPU
VOV A ) % sin O op

) Ku(x) QPU

T V(v ) x @9

-~

the golutionn for the first group (Mr = 0), However,

f the differential equations (6) in regpecl of B oand

writo down straipht awny Lhe solutiows for Group 11
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™~
AT
E(v) i I ch“) an(9,¢)
viv + }) x sin @ oY '
d) | K, (x) 3P (3,¥)
¢ wiv * 1) X T L
K (%) >
(v) v - (14
Mr - x2 Pvto'p) '
Mtu) _ 1 Ka(x) 2P,
3 v+ i)y x 3w !
oL 1 Km o
v viv + 1} 4 8in 93¢ ° )

where K and Pv ars any solutlons of equations (I0) and (11}, in which

c, = viv + 1} 1is to be introduced.

Now all that remaine is to express a plane wave, nemaly the wave striking
the spherical particle, using equationa (13) and (14). However, it is first
necessary tu recognise the moat important properties of the solutions of (10)

and (11) to be applied for this purpose,

4 THE FUNCTTONS Ku ANUL Iv

The differential equaticn (10):

4%k

v _vlv + 1) -
e

can immediately be solved for the case v =0 . Two particular integrals ave:

d=

Ko(x) = eix A

KO(" x) = e-i“ .

{f, Turther, & solution of the equation of order number v , Kv in known,
{t can readily be shown by subatitution, that a solution K,ay of the equation

of order number (v + 1) can readily be calculated in the following way:

LT
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K dK
Koy () = i((v+ 1;-;(!-3;‘2) g (15)
This recurrence formula glves, if one takes Kﬂ(x) ~ aix i
G H
R (K = o'¥ Z uﬁ-“(;*-_-%’-ri:; ; (16)
0

FProm (15}, differentiating anee to wbtain dKV/dx , #nd ualng equatton {(O)
to help eliminace dzxvfdx2

K\J de
KU_](R) = - i v-;**a-;;— ‘ (17)

Furthermore, frem (15) and (17), the following frequently applied relationships

arc obtained:

Kv(x) ¥ )
ok =g = e+ Ry
(18)
dK
Y 1
{2v + 1} " {v + l)i.!(v_' - v T K\M-I .

A gecond particular solution of (10) is obtained directly, since, in (10,
only the secend power of x or dx occurs if the sipn is reversed, Kv(_ x)

in the first solution. The pensral selution is then:

AKU(){, + Bl(v(-x) .

Sionve, in future, it is that very solution Ku(-— x) which we shall use, it
would be a good thing to write down once more the relationships which arc

vbtained by reversing the slgn of x in (15), (16), (17), (18):

W

_ o mix (v+ )t (= !
KU( x) = @ Z 1 MR 2“ TR (19}
0 X
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R, %)
Kw](- X) = = {f({y+ l)-—-;-—--K;(- x)) ;
? (20)
K, (= %)
Komy (= %) = ¢ i(\) ———t K (= x)) .
KU(- x) 1 ]
TR AR e ~aan IR L VPR G DL W
? (213
=@ DRI = Ay DK (= x) - 3K, R 3

I1f, in expresnlons {16} and (19), .ix and .-ix are expanded in

potantial series, multiplying out for this purpose and arranging according to
powsrs of x , then ona obtains the power series expansions for K,(x) and
K, (- %) , which naturally contain an infinite number of powers with negativa,

whole~number exponencts., In fact, it 1s found that:

rade u
K {x) = Z rifx" i W v+ i C 1) 3 LZ01)
Y = (o lutly = w12

Now, huwever, it can be shown that:

v
Z.] C DY+ W) Cofr = v+ D =v+ (et v = 1)
M+ Ol v = W (r + v}

(21b)
0

Thia expresgion is remarkable for the fact that, up to r = v , it is

alternately different from zero and equal to eero, Up to tha power x’ s there-

v+au

fore, only terms of the form x remain, If, in the coefficients, we put

r==yv+ 2 , then we obtain

(r-U+i)(r"V+3)_,,__._(_l'+\-"‘|)

{r + u)!

e (= VMl L X3 X 5.2 - 2%1371) x 1% oo = 1) (21c)

LT
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Thuaz

- - q - - £
KU(K) - i\J i H | = 3.,.(2U 2d ]) X } x _4.."{2})_ ]) % LT AT

(2t
0
(22)
rTedm
fr-v+ D(r~va+ A, (r+ev-1) rr
¥ r (r + v}l s J
b VLB |
Similarly:
v ~
3 o o [ AV ] © 3uaal2v = 20 = 1) x 1 % 3,,,(2u = 2) =yt
KU( x) (- i) Z u el P
#]
bt ?
(r = v+ NN{r-ve+D,,.(r+v-=-1) L tr
* r RN (- i)' .
ray+ | o

Basasn (23)

From this it can be seen that the differential equatien (10) has alsu vne
solution which has to be expanded about the zero noint inte a power serics

without negative powers. We shall denote this by the letter I, and take:

K (x) K (= )
. [ W W 1
Iv\x) = g ( - ) 2 (24)

AN S I S

The power series for Iv has only real coefficicents, and is given by:

(3]

(- I)uxv-ﬂlt.l+]
Iv(x) - Z ¥ (2u + DI+ 3)Qu+ 3., (5 + v+ 1) ° (23)
9]

Yrom (18) and (i9), two impurtant relationships are found:

1
v
‘ i T T
(26)
gl

(v + 1) e = (v + DL = vl
ax w1 v
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In ordav to calculata the functiona Kv(- x} , Iu(“) and thalr firat
dorivativas (which eccur only in the final aguations), it is baat to use tha

following expresaaicoa!

K,(- x) = --’i-;e-

Kot~ x}) = = 3 re-'i:"(l--l-x2 *ix) '
2 - ( 3 )

e B )
K("' x) - (— i)u 1 x3l.l52U-l) ‘—ixx
| %
vi(=1)

(v =) (- 13 20
% g TN T - DN v - B v D TR 3,00 = 1)
1

e i

/u(-i-l »
(v=og=1) (-1 20
[+] b 4

famar TR TN - 3)..(2v-20 +1) T%x3,..(20+ 1)
1

T
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K;(- X)

K& (~ %)

Ké {- x)

KL(- %x)

II(X)

Iz(x}

13(x)

Iu(x)

i -ix o W8 R
+;~2-e ((I X)) -r-ix) i
+;%a—ix((l--é-32)+ix(l-%x2>) N

u-ix((l ——Izs-xz +—£—5x{')+ ix(l - -[?g:-cz)) i

» L] Ll » » L L] L] L] L L] L] L] L] L3 L] L] Ll L] +* L] L] L] -

T
x -

wn

-

lx3-..(2\3- l) e-ixx

v+ | '
X >

- (- )%

20 =1
v (v O’)U_l x20

2 a (\J —g)uli-
1+ Z oD BT T (e ) T (=T

vi+1)
]

vi=1)
20+ 1
(v=g=1) + {v~c-1) 2c
& dwlye a(—l)o g v o~ %
(Zv= D)(2v-=-3).,.(2v-20+1} 1x3,,.(2o+1)
]
o
TR (28)
2 2 4 6
Nl O B B B 3
RS Yy g ?‘?T"'“)’
w o _axt mzsal mes g
1 T "T85 Tx 1171t ’
\
Lo 3l 3xs kb 3x5x7 A8,
105 3 T IT ST T T X 1T =13 7 , > (29)

| . 2 4
X | - 3. x 3 x5 X
T X 3,,e(2vy + |} 2v + 3 31 (Zv + 3)(2v + 5) 51

6
_ 3 x 5 x 7 L
(2v ¢ (2 * 50 3V + 7y 1T " )

A
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2 4 6
2% 3 x 3 x ix
Viksy o T(’”sa‘r*?'vrr“'vw*--') :
2 2 4 6
Ix 3 x Sx _ 3 x
L 'rs"("? 5 u*rr*-n) -
3 2 4
4x _33x° 43 x5 %
L3t TO'E(I IS TFT 50
> o)
5 3 5
- x3 X7 x .
HEERLERERL ) ’
2
i - (v + Dx’ _v*3 3 %
L I x 3...(2v + 1) (l v+ 13y e+ 33l
- d x5 x4 _
v+l (2v+ 1)(2v + 8y B ~ ***f

These series are far more convenient generally for numerical calculations
than the final expressions obtained for Iu and I; according to (24)., For

other purposes, however, these must also be known:

»

si
Il(x) - -cosx'l-——:—-f- ¥

2 3 cos x 3 eln x
Iz(x) = - pin x - - + 3 s
x

6 sin x _ 15 cos x _ 15 sin x

Bl B R EE e % aniieass mealt > (29

# ® & & ¥ ¥ ¥ ¥ B & & F % & & @ B & & B b » & a

W

_ _vn ; v ny (v o+ ) !
1
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; . al “
Ii(x) = + gin x + po; A ;§ X ,
3 ai [ 5 ai
I5(x) = = cos x + .xn % 4 C:' X lan x
X X
Io{x) = = alnx- § cz‘ X, 2l ién X , AS cga X _ 45 sin x|
" " : > (30a)
¥F4
' - X _ v = m
Iv(x) =  CoB ( -59 + Zi; r cos ( 7 ) B
1
(v er=11 (lv+1)+rir=-1))
="+ Dixl ST .

5 THE SPHERICAL FUNCTIONS

The usual spherical functions, which depend only on one variable (the
zonal spherical functions) are not used in the problem involved here. We shall,
later in this secrion, see that functions of the following two forms are

necessary to the solution!

PU(3,¢] = Hu(u) cos ¢ (31}
Pv(ﬂ,w) - Hu(v) sin & coB ¢ (32)
v = gin ¢ siny ., (33)

The function II\J muBt, as may be deen by substitution of the expressions

for P, and . in (11), obey the followinp differential equation:

2
d 2
;::2' ((l hall ¥ )H\J) + V(\' + ])H\J = . (3&)

The geometrical significance of the threc angular functions occurring in
(31, €32), (33):

cos ¥ sin ¢ sing¢ gin & cos ¢
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is clear without further explanation., If we call the angles formad by the radius
vector of the point under conaideration and the axes 1, 2, 3 (ses Fig.2)

01, 02, #. , thap, as can be sesn immediately from Fig.2!

3

co8 61 = cos ¥ , ]

cos 62 = gin ¥ cos ¢ , > (35)

cos ﬁ3 = pin B aine = v ,

We shall now sumnarise the mest important formulae for the functions
IIU , It is well known that there ias a particular solutiom of the differantial
equation of the spherical function which ia rational and whole-numbered in
trigonometric functlons of the angular coordinates ¢, ¥ . Only this solution
is of interest to us, If we have found it for one order number (a.g, v = 1},
then we can calculate it for sll other order numbers with the help of the follow-

ing recurrence formula:

dnu+l dﬂv
T'“'&‘G"+(”+2)nv . (36)

This formula can be verified at once by substitution in (34), A solution of

(34) for the case v =1 18 now:
Hi(u) « 1, (37)

From this, uwaing (36), it is found that:

M) = 0, M = 0, )
H2 = 3y
15 2 3
Ry = N "y 4
3_15 ; (38)

v=da=1
v

1 _ yyB £2v - 2831
Ny = ;3 :E: Sk sv T g)is] (v - 28 - 1yI ‘' J
0
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Another aerias expanaion far M, 1is the following:

U(+|2-I

V=28=| 2.n
m " i{: a (- I)’ (v + 1! v {1 -~ vy . (39)
v - al (s + D)1 (v = 26 = l)]22:4-1

For the apecial value v = 0 , equation (38) gives:

Hv(D) = 0 if v {s an evan number

(4C)
K vTv £v1+ lil_ ; . if v is an odd number
2\2)1(2)1

nvco) = (= 1)

and, for the first derivetive:

v

EEEA s (= 1)2 ] Lok 1)) if v is an cven number
dv 2v-1(3)!(3 _ l)! ' '

V() ] P

(41)

dﬂU ' )
(3;_) = 0 , tf v is an odd number ,

v=0

$imilarly, from (39), the values of the function I, and their deriva-

tives for v = | can be calculated.,

Just as in the case of the functions KU and Iv congidered above, there

is for HV algo a second relationship in addition to recurrence formula (36),

which, like (36), can be proved:

iy dii
i B el CI DY (42)

From (36} and (42) can be obtained formulae which are uften very ugseful:

those are:

dl! QN
i v

+ ] -}
dv dv ’

(2v + 131t
Y
(43)

It

: : % !
(2v + I)vrU UHU*I (v + l)]\J

-1 ¥
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Finally, the differantial gquerisnts of P, and P which oceur in
formulas (13) and (14} may ba notad harei

B, = 0, cos ¢ ,
3P d(vn,)
L gin & + sin ¢ L
2 "'T"" E"‘ i (44)
apP an
mi—w%-\-’- - 'a-;\-’- cos & con ¢ , J
Py = I sin ¢ cos ¢ , )
aP d(vr )
L s cos 9 cos ¢
kL2 av ’ f (45)
1 an d{vn ) dﬂ
T AT = -—-a-—-aincp-b——-smﬂ ‘J

For the firat two order numbers specially we find:

P, = cos ¥ P, = 3 gin ¢ cos ¥ sing
oP 3P2
W—-sinﬂ . T " 3 con 20 aine
P aP
| d o 0 Ly = 3 can O cos ¥
ain 0 oy ! 8in U 39 '
\ (45a)
P, = sin ¢ cosp , P, = 3 sin9 min ¢ coa ¥
BPI BP2
v " coda & con ¥ , - 3 8in 20 siny cos ¥ ,
) BPI 1 3P2
SRy - T el Mo © Asind e ¥ o

Sk :mmu nm ilY ot THE

i
i v et 1 POOR

Ih\uij:.‘.
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] INTEGRAL VALUES OF THE SPHERICAL FUNCTION

It i now necessary to salve cha problam of the calculation of the total
radiation raflected by the sphere, Wa shall ses that thics problem {nvolvas
finding ths surface integrala:

I

Theae integrels can readily ba calculated, for example by the method Riven in

Pqu ain ¢ dédey .

D‘—\.;‘a
o'-_.___‘t:;:

m
Pqu sin ¥ didy and f
0

Msawell's Treatise on Electricity (Vol,.I, p.200 of the German translation). It

is found that:

T2 T 2r
f [PUPH sin 9 dddp = f f PP sin ¢ dddy = 0 ,
0 0 c 0
) (46)
n 2w m 27
2 . 2, " viv + 1)
f f P ain ¢ gide f b{ Pv sin & dddy 27 e reas el
0 O ] J
7 PLANE WAVE

The problem involved is considered to be solved when the plane wave
striking the aphere has successfully been broken down into expressions of the
form (13) and (14),

Al the direction of propagation of the plane wave, we choose axis 23 and
its negative direction. Tha light is considered to be linearly polarised:
axid | is taken as the directioun of the electrical oscillation and axis 2 as

the direction of the magnetic vibration.

If we call the coordinate of & point in the dirsction of axis 3 temporarily

z again, then, according to (35);:
zZ = r cos 03 = ry .,

The plane wave is thus represented by the following values:
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2ﬁin:*3%#5
B, o= o : 5, % By o= 0,
i (46a)
2nint+-§r5
He = 0 Hz--En , Hy = 0.

Harse k and u are the dielaectric constant and parmeabllity in the sense
used in equation (1); the conductivity of the medium (water) through which the
vay passes ia takan az zerc, and A' is the wavelangt in the medium (watar).
1f now we put (ef. (5))t

2niz Anriry

il - el

then wa can immediately write down the values Er aer  and LY introduced

earlier (equations (2) and (4)):

E. = ed®Y cog 9 . M- iel™ gin 9 cos ¢ .1

Eg = - eivx gin 9 , Mg * ieixv cos ¥ cos ¢ , D {47}
, ixv

Ep - 0 , Mv ie giny ., i

However, one can easily expand the exponential function which occurs here

in terms of I and T -functiona. In fact:

ixv o yei L85
e . E w2y + i i ﬂu(v) . (48)
x

ym ]

The correctness of this formula is most readily shown by differentiation
with respect to x and v , According to (26) and (43), if first of all we

regard the series as f£(x,v):
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23

"'\
= dl I
.4 :E: Vv e ) -2 v,
x
]
« Z vl = 1M e e 9t 1w
;! v | vhll Ty '
i
. > {4Ba)
- 12 i“"'I" VL, o+ (v + )1
v :f( v | . v= | ’
1
i 3 vzw v i Sy (v)
- v v ;'! v ]
|
= dvi(x,v) ., J

Similarly, it can be shown that:

%é = ixflx,v) ,
Finally,

() o = 1 .
Thus ,

f(x,v) = gt i

decordingly, for Er and Mt we have the desired series expansion:

o) Y
y=1 Iv
ET = Z V(ZV + ])i ;ﬁ ],\J '

> (48b)

= 1
Hr v Z v(2v + 1)1V -;I’v .
! X J

PU and Pu are the functions defined in (31) and (32).
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Brarting with the valus of E  found, and with the halp af formula ¢ray,

it is new possibla re find a solutinn for Group Ip moracver, starting with M

and using (14), a solution for Group IT can ba obtained, The sum of thazs twu

solutions muat then ba that sams incagral of the Maxwall squation which repro-

ducas the plane wave. It can sasily be shown by dirsct calculation thac the

saries axpanaions obtained in this way are in fact identical with the

expressions (47),

It is in fact possible, from aquationa (26) and (43), 1f diffarencial
equation (10).

4l
| v

Iy
viv + 1) dx2 * Iv - ;7

is taken into consideration, to derive the following two equations:

” )
Z v —f-——ryz“ S/ PN 0
vy + v dy du dv 2
1
2u + | v II dnv s+ 1Y d(v, )
viv + 1) 317' dx dv
® 1 F (49)
= Z v(2v + iV —-‘2‘---;-‘—’ ,
l x
~ 1
. Z v{2v + 1)1“—;:-’- m
!
& ixexxv . /)

Lf now, in accordance with the conditions laid down in formulae (13) and
(Iz&). Dels

1 ap it
F . :EJ " 2v + | iu-l ix alu i 2y + 1 iv Iu 223 (49n)
8 Vv + 13 X 30 Vv + 1) x sin 0 3p ° J
{ [
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then, uging aquationa (44), (45) and (49), it is found that:
E" B - ‘1XV ain D) n

fimilarly

E = " v + | i\.l-l Iv BPU
¢ uzu + !5 X l{n 35_
]

? (49h)
- v+ | v Iy, apv -« 0
R T come s A 1 o ’

| -

In the same way, M" and Mw are found. Thue, instead of expressions

(47), 1t 1s alsc possible to use the following Formulae for tha plane wava:

\

B

1
E_ = ZE: v(zv + 1)V ;; P4

] = ¥
£ _Zv2u+1iv-lfxapu+zv2u+liv Iu a}v
3 vy * 1) x v vwiv+ 1) ° X sin 3¢ !
1

1 -]
2y + 1] Rl Iv BPv-Z v + 1 iu__l_\iapu .
x gin ¥ 3y viv *+ 1) x %
] |

F (50}

o
1
Y] v
M, = Z v(2v + 134 ;‘?"u ,
i

) -]

t 1
" 2y + | iv-l Iv an+ ¥  + | i“i‘ia;“

wlv + 1) X 8in V 39 Ve + 1) x 39 °?
1 1

]

1
2v + | Y Iv 3y

M - - Y I i_ Euy- apu - Y i --—-\—]
@ z: Vv + 1) x 39 viv + ) x 8in ¥ ¢
|

A
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] REFRACTED AND REFLECTED WAVES

If now we pracead to the reapresentation alme of waves within the aphera
and of the waves radlated outwards from it by maans of axpransiona of the form
€13} and (14), than we must take two facts into consideration: firatly, only

the integral of equation (10) which is denotad by I, is uded Lpaide the

sphara, ainge all other particular intapralu for x =« O , i.e, {in the cantre
of the sphura, must be infinite; sacondly, in the oucer space, Ku(" x) 18
wiad, #ince only this haa che factor:

_anir

=ix AT
¢ = 1]

gu that the components of the elactrical and magnetic forces take time inte

consideration enly in the combinations

ezni(nt-ft) '

which {s the churacteristic feature of radiation emitted by the spherc,

The radiation within the sphare can thus be represented in the following

way!

E ., = :E: vib
ri v

‘xul €r—|
o
<

/o

bi 1 ap q 1 ar
E a W h -2. - + b \: ——I\-J
3 Vv * 1} x 3% Vv # 1) % Bin O '

s
]
-1

b i ' ap % I
” v v v o v vy
wiv + 1) x sin ¥ 3¢ viv + 1) = 9 ’
5 S

ri

=
.|
-7
[
=)
<
lH
] <
i
<
-

= / b i 1 gt q 1! ap
M - z 9 v ? Y + v _\_.'. v
9 \u(u 4 [) % aln @ 30 Viv + 1) % o °
}
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b i T, i, q I! P
By ™ Z (m T T“vmwr)'

! )

. Tha coafficlents bv and q, » t0 which is added a coafficiant of che
factor 41 aimply to make the later formulae rather more elegant, are, together
with a, and Py which appear in the following expressions (52), determined
from the boundary conditiona (7}.

In the outer apace, in addition to the plane wave (50) which strikes the
sphere, there is the reflected radiation:

= K (= %)
E - Zvai FPo,
ra AV

1

i Ki(=x) 9P B, K (= x) 3P,
Ega * Z (-Tv'l-i) X '3_3- v(u+])xa1nﬂr ’
1

a i K (- %) BP Py Kv(- x) ih!-"\'1
h«pa = Z v(v(v + 1) x sin v a-p EREYCRED) x FL
i

> (52)

i K, (- %
Mra : VP, _T_Pv '
l X

= ai K (- x) P p K'(~ x) ap

M - Z + W W J

da v(b + 1} x 8in O aw wiv + 1} X FL
1

i agi K- x) 38 p, K'(=x) op
Mwa = VS ey x ot yi{v + 1) x s8in ¢ ¢ *
1

~

9 DETERMINATICN OF COEFFICIENTS

T s radius of the small sphere {s dencted by 5 , the index of refraction
of the medium (water) by My and the complex refractive index of the material
of the sphere by m . Moreover, the valuee of X, and X, for the special
value r = p we denoted by a and £ , and the relative index of refraction

t

m/m0 by m' , when:
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. 2ﬂm0p _
b i
B = 2-“-;1’- -~

Finally, we use tha abbreviations:

Iv(a) - Av
Iv(ﬁ) - BU
Ku(_ a) w CU

We now introduce expressiona (50), (52)

(E& * Fﬂa)

wa)r“p

bt}
(E

u(Mﬂ

u(Mw +

Mﬂa rap

wa)r=p

LT
1873

{53)
m '
E“ B = ma a
4]
IL(a) " AL .
IL(B) - BL 5 \ (54)
KL(- g} = C¢ g

and (51) in the boundary conditions:

Hi

(Eﬂi)rwp 1

(E¢i)r_p

Bty )

E(Mwi)r-p

(54a)

rep !

*

and obtain, since twn paire of these equations can be shown to be identical, the
following conditions for & s bv’ P, and q, *
A' c! B!
v v
—(2U+|)1 ——"‘au?:bus »
LV
(2v + Di%h +aC b B
S4h)
A C . Bu
(2v + D17 -— + Ty ™ q, = 3
. s My LI ¥
(2v + 1)1 Al + p ) 9B, -
Firom thig, it is found that:
AUBUR - BLAUH
dg = ¥ (v + 0’ 'R B~BCa !
u \ Vo
- ? (55)
A BB~ B A'a
b = = (2v + 11 Y Bov
v CR'8E-HCa
vV vy
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10 FORMULAE FOR PRACTICAL CALCULATIONS

Formulae (55) appear so eimple at firat sight, but are so diffieult to
discuss, A particular difficulcty, where metallic spherules are concerned, lies
in the fact that A and henca B, B; are complex quantitiss, Howevar, avan
in tha cuse of non-ahsorbing spherules, when A is real, two complex quantities,

namely C, and C; , 8till remain in the expressions under all circumstancss,

For quite small epherules, it is always most convenient to carry out
the calculation using equations (27), (28}, (29) and (30). Accordingly, we can

write:

v T
ad

v R e o Erga oy A T

e\,r-bl

v Z ] x 3-..(2V + l} gU

- : v | x 3oo.(2u = I) ~ix ) .
Cv (- 1) ~ e {h\J + LGRU) :
> (56)
v+ Da’ '
Ay = TR oo (v e ) v
(v + 1)8" :
B, T X 3...029 + 1) By ?
e g i3V 1% 3.,y 1) o ming g
C; vi= 1) uv+l e (h\J + Lukv) - )

The factors f£ , f; are sharply converging power seriea in o2 while
g, g; are fa:tgrs of the same series in 62 8 hu' kv' h; and k$ are finire
power Bums in o« and so all are expressions which can be calculated relatively
easily. They can be taken directly from formulae (27) to (30), All these suma,
£
diameter which is emall in comparison with the wavelength of the light internally

f; etc, begin with the term ), so that, in the case of apherules having a

and externally they all lie very close to a value of | and very simple expres-

sions can be obtainaed for Av' AL and @ on,

If (56) ie introduced in (55) and if the abbreviations!

L] 1 4 1 1
) aia fv . - fv Eﬁ N hv Luku By, #5s
Yy EL * Iuk; ¢ v ?: g, ' v o * Lok g
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-g.!. = ‘."3!. - w2, (58)
o m
0

ars written, the followinp practical formulae result!

2 -
14 o
. w l)v-l v+ ] gdV*! 4 » Yy

Y Vo m gt @ue gt TR e AT

v v
oy sl (2! 1=, g 43

P - (" ]} u *

! “xfiav-n? VeI

It is not difficult to evaluate approximately the way in which 8, varies
with increasing particle size., For small values of o , the valuea of fu’ g,
etc, are all fairly close to | and consequently one cen use the approximation

formula:

a2u+1 v o+ ] v
12 x 3%, 2y = 1)°

F (60)

m - v=1
C - - I .
v m,! s ¥ + 1 ( )
AY]

Here {:\‘1 is a complex number whose absolute value does not differ too
greatly from 1%, Uhereas a,6 , as {60) shows, at first inereases with the
(2v + 1)th power of o , the curve of the a values bends away for larger
values of a and never exceeds a certain value, Thie can be seen if, from
{29s) and {19}, one takes the values for Iv and KU for very large arguments.

Since o iz real and B = 8' - if' , then:

k(-0 ~ &% RiG- o) ~ - ie"¥®
IU{u) ~ uin ( —3211) ’ I:)(Cl) ~  CO8 C‘l""\?') * & (60&)
P VT VT
o i R | - (%)
I\J(B) o -2-9 e . I\J(B) ~ -2-9 (-] )

* In the case of gold spherules, for example, the absolute value of C lies
between 0.9 and 2,5, depending on the colour of the light.
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Thus, if this 1a introduced in (55), then, as the limiting valus for vary large
values of a

a, ~ (2v+ I)e\‘1 ,

iv ia (61)

o A (o (- ) i o (- )

is obtained. Hare e, is a complex quantity which varise pariodically with
@ and which has an absolute value lying always in the reglon of I,

» L + I3 *
8ince, in (6) the power ekl 1s constant but the denominator increases

rapldly with v , initially 8, mudt far exceed all other coefficlents, When
8, tends towards its limiting value, howevar, (61}, &, joints it as the
second coefficient, while all others remain email. Later, 8, is added to the
firet two coefficients and ao on, From the formula for fu, g, ®etc., 1t can
further be seen that, for the coefficients which follow later, formula (60)

remaine approximately valid for longer and longer,

From these considerations, it follows that, however large a might be,
from a certain value of v all coefficients remain so small in comparison with
the first that they can be completely disregarded,

The radiation reflected by a small sphere is essentially always comprised
of an infinite number of partial waves, although the number of partial waves
increases as the sphere becomes larger,

This statement is, in the main, applicable only to 'electrical vibrations!'
of particles associated with the coefficients a s however, it is also valid
for 'magnecic vibrations' which excite the incident waves, i,e, the coefficients

p, to be discussed later in this section,

In the numerical examples introduced below in order to gain a closer
insight into the optical properties of colloidal metal solutions, the diameter
considered will have a value of up to 2p = 180uu . This value already lies
at the limit of microscopic resolution and thus corregponds to the extreme size
of the particles of colloidal solutione, Even with the large diameter
Zp = 1BDun , higher "electrical partial vibrations' are already vanishingly
small in comparison with the first two from v = 3 s 80 that only 8 and 8,
need be calculated,
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On the othar hand, it is nacessary, for exampla in the case of the problem
of the rainbow, which could be approached by the mathod usad here, that a fairly
large numbar of partial waves should be considered and very great difficulties
as ragards ths calculacion would than bs encountersd.

The first two coafficisnts are:

3 mlz"’1 ]
n'" o+ 2wl
(62)
2 (
a, = - 1 asu . 22
2 z zm'!.‘.zw. »
R B
1f o 4is very small, u, v and w can ba taken as being equal to !,
whereupeon:
2
‘ el
a = 2a3 m 1 ;
m'c o+ 2
2 (63)
i W% 1.5 A |
2 Y 2,3 °
w *12-

Of course, for small values of « , a, is already vanishingly small in
comparison with a and so only each first partial wave remains, the existence
of which was originally demonstrated theoretically by Lord Rayleigh; for this

reason, I shall sometimes refer to this, for short, as Rayleigh radiation.

We may also conaider briefly the special case in which the spherules are
made of a perfectly conducting material. It is well known that this case was
first discussed by J,J. Thomson, while F, Ehrenhaft had the idea that the theory
developed by Thomson could be applied tu the optics of colleidal solutions,
Although, for the reasone given in section 1, this ldea did not work, the case

{8 of a certain historical and general theoretical intereat. We put:
m - - i= {ef, (32)

and accordingly disregard in equation (55) terme with the factor o in compari-
son with those having the factor B . Thus it is found that:

RIEPRODUCITILITY OF THE
ORIGIN AT vatR 13 PAOR
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1873



LT 33
1873

Af
; v
a, - (2v = D)L 7T o
v
For small valuss of a , therefore;
2v+ ] f!
v=1 v+ | & la Y
e, = (=1) Q v r o {63a)
2 Vg% 3%, (av - 18 By ¥ ek
For large values of a , (19) and (30a) give:
dy = (2v + l):i.vﬂaiu sin ( - - ; I v) « (63b)

The absolute value of thie quantity varies uniformly and pariodically
between 0 and {(2v + 1},

Of particular interest here also is the Rayleigh wave; the accurate value

of a is

eiu a cos o = {1 = az) gin @

a = 3
’ 5 ® (= 00

. (64)

For an infinitely small value of a , it is found that:

a - 2u3 i

The characteristic difference between this formula and (63} ie the fact
tha~ thare the factor (m'2 - l)f(m'2 + 2) ia involved which, as we shall see,
cannot be taken as approximately equal to | in the case of matals, and which,
above all, varies sharply with the wavelength. Another very impertant difference
is the fact that, in (85), a, is & pure real quantity whereas the correct a,
calculated from (63) has a very considerable imaginary part, This part governs

the absorption in the colloidal metal aclution, as we shall see,

We now procead to the discussion of the 'magnetic vibrations', i,e. of the
coefficienta P, For extremely small particles, formula (59) is not used,

since (1 = vv) then approaches zero, Moreover, according to (57) and to (29)
and (30):
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l
vy m T (Rs, T AR
ey
LW g 52 - u2 !
v (v + 1){2v + 3) st“
4 2y + & 2.2 4
Dol _alegd R il oo
2y + 5 32 (2v » 5)(2v + 7) [ i
i - E? ﬁv
(v + 1)(2v e+ 3) fvsv )
|o.|c|(66)

Here &  denotes, in a manner similar to the case of £, f; and so on,

4 and Bz , which is equal to | for

small particle diameters, Furthermore, now putting:

a rapidly converging power series in o

=
=

v
s, = e ML uy, e 0

<
<«
<
<

equation (5%) gives, for P, !

(= 137 u2u+3 m'2

Py " STV g

- |
27 v+l

v
For very small diameters, one can spproximately take:

- ¥ c2v+3

v © (2v + 1) (2v + 3) 2

]
(m'-_ I) 3
¢ = 32...(2v - 332

For large diameters, if the values of AU, AL » etc. of aquation (54) are
calculated according to (29a) and (19), then equation (55) gives:

m' Bin {a =~ =) + i cos - 3
p, ™ {2v » I)i“eiu -2;,) ™ ( T)

(67}

(68)

(69)

(70)

It is thua possible to describe the behaviour of P, in the same way as

a8 was dealt with in (15).
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For small particles, P, ineraasas with incraaning particie siza Py
approximataly in accordance withi
]
a2v+3 cu
v 1 3%, v = D229+ 1) (v + 3

. 7n
c = @?*- e nY

The absolute value of C& i8 not far removed from !. For large valuam of
a , the curve of the pu-values bende away and finally, for vary large values of
& , it changes periodically as the particle diameter increases further:

P, ~ (2v+ Del (72)

Hare cL is a complex quantity, varying periodically; ite amplitude i{s not far
from le

Where the magnetic partial vibrations are concerned, the same considera-
tions apply as those advanced in the case of electrical ones; in fact, the
vth magnetic vibration runs approximately parallel to the (v + 1)th electrical

vibration,

From a comparison of formulae (69) and (70) with (60) and (61), it can be
seen that the absolute value of P, in general lies somewhat below that of

v+ |
The first magnetic partial vibration is for example, alwaye of the same

order of magnirude as the second electrical one for all particle sizes,

Very small particles always radiate laterally cnly the Rayleigh WaVE;
with quite coarse particles in colloidal solution, the sccond elactrical and the
firet magnetic partial vibration come into the picture,

Thus, in the numerical examples below, I have considered, in all, juat

three coefficients, namely &, &, and Py I shall calculate Py for

2
coarser particles from the following equation:

Pt T TR 733

where Upy vy and W, ate the same quantities as in (62), For smaller

particles, the approximaticn formula:
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2

5
Py = T~ (74)

applies,

Wheresas the assumption of perfect conductivity {n the case of elasctrical
partial vibrations leade to results which nav.rtheless agrea with those given
by exact theery, for magnetic vibrations, this assumption leads to widely
deviating results, If B8 in (55) i{s taken as being infinitely large, than we
cbtain;

A
SNy
B, ¥ - {2v + 1)1 E: F

Therefore, for small diameters, according to (27) and (29) we gbtain:

2us| . £
o i

" e s R
W A

=]
Py " =N 12 Z

"3...(2\.}- 1)2
a value which is of quite the same order of magnitude as the value of a, found

under the same gsaumption,

if we accept that the spherules suspended in the medium are perfect
conductors, then we find the reverse result that the magnetic partial vibration
of the vth order runs parallel to the electrical partial vibration of the same
order number (instead of the next-highest order number), Particularly in the
case of very fine particles, therefore, we arrive at the false rasult that, in
addition to the Rayleigh wave, the first magnetic vibration is involved in

Approximately the same order of magnitude,

J«J. Thompson, who firet proved the last part of this sentence, showed, as
already known, that the investigation of the polarisation of light scattered
laterally by colloidal metal solutions revealed the falseness of the resulrt,

The strange polarisation phenomena which F., Ehrenhaft’ and E, Mﬁllare later
cbserved, in no way indicate a partial validity of the assumption of perfect
conductivity. We shnll see later that the exact theory explains it quite

fpontancously.

in view of the later numerical diascussion, the value of Py ahould he

noted:
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- io pin a =~ g coa a
P, Ap T . (75)

For very amall values of a :
Py = o8 (76)

If (76) is compared with (65), it is seen that the amplitude of the
magnetic vibracion for very small, perfectly conducting Hpherules, must be
exactly half that of the electrical vibration,

11 PARTIAL WAVES

For purposes of the following discussion, it will be usaful to lave a
representation showing how the inteneity and direction of vibration of the
individual partial waves (particularly the first) vary from polnt to point on a

large sphere at the centre of which the apherule under consideraticn lies,

The components £, and Hr does not have to be considared, since they
hardly take part in the transfer of energy into the outer space acceording to
Poynting's law. Thus, only the components tangential to the surface of the
sphere remain., However, for each partial wave, in accordance with (13) and

(14):
Egﬂg + E¢M¢ = (0

applies; that is, the magnetic lines of force on the face of the sphere every-
where rum perpendicular to the electrical ones. It is therefore sufficient, to
obtain a clear representation of the radiation, if one depicts the pattern of

the electrical lines of force uvn the face of the sphere,

In Figs.3-10, the electrical field lines on a sphere surrounding the
particle are shown for the first four electrical and the first four magnetic
partial vibratious, The plane of the drawing is the 1 x3 plane, that is,
the vibration plane of the light beam whivh excites the waves, It is a plane
of symmetry of the process, and it {s easy tov complete the figuras by adding,
to the front hulf=sphere represented, the hemisphere lying behind the plane of
the drawing, since the curves un both are quite congruent, In the case of
magnetic vibrations, Er = 0 ; the lines therefore run as closed spherical
curves, snd, in fact, for each of the two hemispheres, there are v central

points on the equator (% = 1/2) at which the force is zerv and around which the
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lines af the field wind in v differant groups, In cha came of slegcrical
vibrationa, on the other hand, the lines of tha flald run in nartain conical
aurfaces which all go through v conical diameters lying in the plana of the
drawing, 7The curvea ahown ars the linas of interssction of thesa conical ’
surfaces with the sphers. Thess curves all run towards the v polas which are
marked out hy the v dismeters. In fact, the lines of the fimld bend away from
the spharical surface in order to close up elther internally or axtarnally,
dupending an the phasa of the vibration, since they ean naturally have neither
beginning nor end (apart from the linca directly on the radiating particlen),

1t is now easy to form a picture of the magnetic ficld lines also, The
figurcs of Group I give, straight away, the magnetic field 1lines of Group II
and vice versa, Lf they are rotated by 90%, i,e. axes ! and 2 are axchangsd,

12 THE DIFFUSE LATERAL RADIATION

If observations are carried out at an infinite disetance from the particle,
we then have to introduce in (52)1

Kv(— ®) = e-ix .

ad obtained from equation (19). Then, moreover:
=-ix

K;{- x) a = ?e '

hence:

i %y BPU Py ! aHv
MTETTDY Y ‘SR D Emve )
1

> (7
_2mir
A
5 = G Aoe
h@u lﬁﬂa T

R o i ca vl B
!
A
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It ia thereby asssumad, that the light pasaing chreugh the solution is
linaarly pelarised, in such a way that the direction of elactrical vibration
forma axis 1, Accarding to (47)1

Relative to the ifntenalty of the light pasning through as the unlt, the
intenaity of the diffusely-scattered light ist

¥ - ’ 2
A.z B, ;¥
Jg = ) ¥ i 15 T w(v + I) sin d\ﬁ '

fmy ]
? (78)
2 50 b ar \ |2
I At EE: t v o_ ) v
¥ 4“§r§ v(b + 1y 8in 8§ 9@ v(v + 1) 30 ¥
1

L4

In these formultae, the straight lines {ndicate :lat the absolute value of
the complex quantities between them is to be taken, From (78), it can be seen
that intensity iw inversely propertional to the square of the distance r ;
this was clear previcusly, The two intensities Jg end Jp denote the vibra-
tion components parallel to the meridian (T } und to the parallel of latitude
(I }+«  Both componenuts have, in peneral, a quite definite phiase diffaerence
whlch can be found by calculating the phiases of the two complex quantities in
(77) in the usual way. 1If therefore the solution is viewed at an angle to the
bean paseing through it, one must, in general, receive polarised light, assuming
that the beam passing through is linearly polarised and that the guspended
particles are so large that, in addition to the Rayleigh radiation (which is,

in itself, linearly polarised), still higher partial waves are aise observed,

However, all directions lying wn the two planes of symmetry 1,3 and 2,3
are exempted from this., From the figures of section 19, it cun be seen at
otice that: if the volluidal solution is {1luminated with lingarly polarised
light and ig observed in a direction at right angles to its clectrical vibration,
then the light seattered Jaterally is Hincarly polarised and the direction of its
electrical vibration is in fact parallel to that of the beam passing through the
solution, If the dirvetion of vibration of thee beam passing theowh the solnlion

is rotated by 90 without alteration in the viewing direcrion, then lincariy
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polarinad light is again ebtained, bur Lte directlon of vibration Is alse

rotated by 90° in relation to the former dirsectionm,

The firat case is characteriaed Iin our formulas by ¢ = /2 and the
aecond case by @ = # n/2 ,

Although the acatament just made may appear to be a simpla one, it can
nevarcthuless acquire great Importance. Tha obmervations which Harr Steubing
(#se eaction 1) mada on the polarisation of light scatterad laterally showad
that, if {llumination is carried out in the way specified with parfoctly
linoarly polarised light, che lateral radiati{on always containe, although tu a
vury small extent, svme unpalarised light in addition to the predominating
linearly polarised light, I am very much inclined, from this, to draw the
conclunion that the particles suspended in colloidal solutions camnot be upheres,

even if the remalning optical properties should support this assumption.

The case in which illumination is carried out with unpolurised light can
now be ruadily dealt with, One can simply imagine the unpolarised light tu he
diasociated into twe incoherent beams of equal intensity, which are linearly
polarised; of these beams, one is considered to have its direction of electrical
vibration perpendi{cular to the plane fixed by the directiom of the beam and the
radius of vision and the other to have its direction of electrical vibration in
this plane. Two incoherent, linearly polarised componenta at right angles to
each other are then also obtained in the light tranemitted, but having in
general, different intensities, This therefore means that the tight transmitted

iy partly linearly polarised.

[f an unpolarised beam of light is poessed through the colloidal solution,
then the lipht scattered laterally is always partly linearly polarised (never
elliptically). In faet, the direction of electrical vibration of the polarised
component iy either perpendicular to the plane fixed Ly the direction of the
beam amd the radius of vision er in this plane, depending on the particle wize

and the direetion of vision.

This stntement is naturally valid here vnly under the assumption that the
particles are spiwrical, but there is no doubt cthat is always applied in the

case of amorphous (hence non=dichroic) colloidal solutione.

When solutions containdng very small particles are invelved, it is known
that only the first direction of polarisation mentioned is obaserved; with turge

particles, however, as we shall see, the gecond directiun is also present,
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13 INTENSITY OF THE LIGHT SCATTERED AT RIGHT ANGLES IC THE TRANSMITTED LIG!‘!"{“

Since, in general, chsarvations are carried out using unpolarised light,
enly the two maln cames (I} O » %/2 and (II) ¢ = + 7/2 ara of interest to ua,
In both cases, Eﬂ = Ha = 0 , sc that only Jﬂ remaina; we shall denote thin as
JI and JII in the twe casees, JI is the Intensity of the radiation which hag
its diraction of vibration perpendicular to the plane of viaion, as we may aay
for short, JII 18 the intensity of the beam vibrating in the rlane of vision,

Firstly, (44) and (45) give for the two cases;

(1) $ = % , sing = v,
3P L B, 2 )
7 a1 SO SR T O -vOm) - Vit ) (v)
(IT) w-:lz'., sin ¢ = 3y
(80)
3p ar

v P l Y
v ual {(i -y }!'[U(V) - VHU(V)} i ma;— a 3 Hu(\r)- i

This must be introduced in (78). Initially, we shall now restrict dig-
cusBion to the case where observation ig carrjed out only perpendicular to the

beam. We thus put v = 0 and then use formulae (40) and (41), 1t is found thac:

2
2 a - _ {2a) a
X! _ 0 ot a 2o+ 1
Iy = 452 -2_+ZG( 2 2a (2(0‘*!“)*[}20) 2
Tr ] 2
2 (81)
J - “2 o= l)cﬂ (20)0 4, = _‘l@_‘{:_l__
I1 lu'riri 220 20 2g = | &
1

These equations are written in such a way that each summand containsg two
coefficients having the same order of magnitude {cf. section 10). 1In the
numerical example it ig pussible, as mentioned several times previously, to
restrict considerations to the coefficients a;y 8, and Py » The following

formulae is thus ysed for the calculation:
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J ] -——-n o '
L LY 4 2
r (82)
2
12 A = By
I;; hua & significant value only in the case of the very largeat particles
and even then, J. still predominates. This is the Intensity of the Rayleigh

1
radiation and its maximum occurs in fact at right angles to the electrical

vibration which excites it. At other angles, its intensity is:

J = Jl sin20

and its total radiation is accordingly:

T
R = J]2ﬂr2 f sinaﬂ dd = =1 (82a)
O

Consequently, it is thus possible, if one measures the Rayleigh radiation
in the principal direction (JI), to calculate its total value, i.e. therefore,
the loss experienced by the transmitted beam of light due to this radietion, In

the following discussion, the guantity:

a 2
2 2 1
= e At s
. In 2 (83)
will always be given; this is also a measure of JI !
3 R
JI '?? . (B4)

How tLlie total value of radiatioa IT is found we whall see in Bection 17,

14 HADIATION OF MANY PARTICLES

So far, we have always restricted ourselves to the calculation of the light
scattered diffugsely by a single spherule, We shall now proceed to the case
where a large number of spherules are finecly dispersed in the medium, all of the
same diameter 20 and of the same optical bLehaviour m' ., FKach individual

spherule is then struck not merely by the heam passiag directly through it, but
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also by tha light diffusely scattered by the other spharulas. The effact of this
tacond other vibration an the process within aach spherule and the resulting
change in the total lateral radiation thersby incurrad has been thecretically
investigated for extremely small parcicles by L, Lorenz, while

Jolo Maxwell=Garnett has followed the conaequences of the lLorenz theory mathe-
matically in relation to the optics of colloidal metal aclutione {of. mection 1),
It is saen there that the suspended particles must iie very close together if

the interaction between the lateral radiation and the radlation process itself

is to be observable,

We shall regard aqueous colloidal solutions of metals in the following
discussion as being optically infinitely dilute and we shall calculate the total
lateral radiation simply by multiplication of radiation diffuscly scattered due

to the existence of an individual pa..icle, by the number of particles present,

If one has remaining objections concerning the validity of this assumption,
it can readily be checked experimentally, whereupon the sclution is diluted
gtill further. If our assumption is correct, the colour of the sclution must
thereby remain unchanged and the absorption must be shown to be proportional to
the concentration in all parts of the spectrum. On the other hand, if the
assumption were false, then a colour change would thereby occur, as observed by
Rirchuer and Zsigmondy in investigations on concentrated gold solutions in
gelatine (¢f, section 1), So far as I know, such concentrated aqueocus molutions
have not yet been achieved. In any case, I restrict myself to the usual dilute

solutiona,

In the following discussion, we shall give the concentration of the solu~
tion in cubic millimetres of metal per cubic millimetre of water., 1f the number
of particles in & cubic millimetre is N , their diameter 2p , so that the

volume V = 6n93{3 . then the concentration isg:

a3 g
C = KV = — Mo~ . (85}

bxn

On the other hand, according to (83), the total value of the Rayleiph

radiation is:

e 2
R = N%A'z !
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heance!

R = FC , (86)

where Fl is a quantity which {a indcpendent of the concentration but which

depends on the parcticle aize and the wavelengeh., For thia quanciny F, , ve
shall use two different formulae according to whether tha particlas are small

or larget
3 a 2
P, o= -"’—ll”j-v -1-3- ) (87)
b 20
4n 1|3 '
S s N -

The firat formula is particularly suitable for small particles, since, as

we already know, for very amall spherules a increases proportionally with

a3 + According to (62):

a, m - vy
R s ; {88a)
2 P2 o v,
wherea Yo vl and W, assume the value | for very small particle dismeters.
Thus;

3
oo 25T 4 (355
1 ) | La] —-r?m LS
X m T+ 2wI
and, for extremely small particles:
2
3 2
_ 2 m'e -1
F, = =V 3 . (90)

At w't o+ 2

This equation (%0) is none other than the familiar Rayleigh fonnu]ug. it
indicates that, at constant concentration, the radiation of a solution is all

the greater, the coarser are the particles, In fact, the intensity of the
radiation is directly proportional to the particle volume. Moreover, in gencral,

2

short-wave rays predominate if the factor (m'“ - l)/(m'2 + 2) which is dependent

BEPROOLICIBUELY G Tl
(1 :J'sl ity J\‘*LCL: I[; }.PUUR
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on tha optical properties of rhe apherules, doas net greéatly vary with the

celour of the lighr, This last Atarement does nokt actually hold abtaolutely true
in the case of metals; the light diffusely radiated by colloidal matal solutions
containing the fineat parcicles is, for this reason, generally not blue like
other turbid sclucions, but has a colouy characteriatic of the metal involved.

If m'? - 1/ ('? 4 2} is constant, then the familiar Rayleigh law applies,
according to which, for different colpurs under otherwise similar eonditions,

the radiation is proportional to A‘-4 ;

Equation (88) can serve to follow Rayleigh's radiation law up inte che
range of very coarse particles, As we have seen (in section 10), a, for very
large particles varies as a periodic function of the parricle diameter with
conetant amplitude, From equation (88), it is accordingly found that, at
constant concentration, the Raylelgh radiation decreases with increasing particle
diameter as scon as the particles become large, Indeed, apart from periedical
variations, the Rayleigh radiation is finally inversely proportional to the

particle volume,

(I) At constant concentration, the Rayleigh radiation increasey, for a
very fine dispersion, as the particte diameter increasas, roughly in proportion
to the particle volume, but reaches a maximum once the particlas have already
become quite large and from then on decreases continually and rapidly if the
distribution grows still coarseri actually, mexima can be established pericdic~-

ally which become weaker snd weaker,

(II) 1If the spherules consist of perfectly conducting material or of
material which, to all intents and purposes is perfectly whice, the particle
diameter for which the maximum of the radiation is achieved is proportional to
the wavelength and the maximal valuc of the radiation itaself ig inversely

proportional to the wavelength,

The second statement which is derived direetly from equation (88) naturally

does not apply to collvidal metal solutions,

It would be possible, perhaps with certain reservations, to define as
optical resonance the oeeurrence of this radiation maximum, which must also
arise in the case of turbidity produced by non~conducting badies (nestic
Lurbidity, steam jet, etc,), although at a different position, as it does in
the case of condurtors. However, it must be borne in mind thar thia 'optical
resonance’ is associated only with quite flat maxima and that, consequently,

the energy spectrum of the diffuse radiation will show only slight increases
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—-—3 ] aI . (9])
25
The Rayleigh radiation {s then calculated, sccording to (87) am!
3
F o= 247 V[a ]2 .
| 1.& 1
{92)
m'2 = ¥
GI - u] ";‘2"———‘ ]
m o+ 2w

l

The rediation for infinitely fine particles iz found by setting Bis Yy
and w, equal to ! in all three cases, For gold, the following values are

1
ocbtained for (al) = (m'2 - l)f(m'2 + 2)

0

Ao 420 450 500 525
0.579 = i » 0,675 0,602 - 1 = 0,666 0.807 = i » 1,180 1,330 ~ { = 1,440

A= 550 600 650
1.925 = i = 1,211 1.880 - i x 0,39} 1,545 - 1 = 0,180 .

In each case, these values are quite different from thuse which ona would find
in the case of infinitely high conductivity. Tor perfect conductors, formula
(65) gives, in fact!

(al)0 = ]

quite independently of the wavelength, In general, for metals, a has the

form:
= ¥ oo 1"
a a, ia
and:
2 2
Ia|] = ay+a)" .

In order to emphasise clearly the difference compared with the perfect conductor,
for which 1al|2 = | , when radiation is considered, T shall alsc write down the

values of |a1|2 for gold:
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above a mean valus, even with a high degree of uniformity of tha particiss
forming the turbidiry, 1f the particles have bacome coarse, The radlated lighe
in the cade of turbid bodies containing nen-conducting partiales (steam jet,
mastic turbidity) is therafore finally almost white with only a waak tin. o of
colour, Colloidal metal sclutiona behave similarly; as we shall see, in the case
of geld, for example, the yellow is, in genaral, rather conspicucus, correapond-

ing to the natural yellow colour,

15 RAYLEICH BRADIATION OF GOLD SOLUTIONS

I now begin the calculation of the optical properties of a suspension of
extremely small gold spherules in water, taking firat of all the Rayleigh
radiation., As a basis, the following figures arc obtained when the smoothest
possible curve is drawn through the measured values recorded by Hagen and
Rubenslo. Only values of the reflection coefiicient in tha violet region have
been changed somewhat, since thuse given by Hagen and Rubenn]] are cercainly

too small,

o ! &) | (# and R) (taEen) Geikei) n m'? Al
40| 0.293 1.72 0.332 | 1.70 | 1.70-ix1.70| 0.00 -1x3.20 313
450 | 0.331 1.73 0.338 | .72 l1.93-ix1.72)-0.017-1 x3.32 | 3%
500 | ©.470 2.07 0.480 | 2.02 | 1.10-1 x2.02 | =0.160 -1 x 2,49 | 374
sas | - . 0.613 | 2.23 |0.79-1x2.23|«2.45 -1x1.98 393
550 | 0.740 2.2 0.730 | 2.45 ]0.57-ix2.45|-3.20 ~ix1.57 | 412
600 | 0.844 2.91 0.850 | 2.96 |0.38-1x2.96!-4.84 —1x1.26 | 450
gsc ! 0,880 1.58 0.888 | 3.56 |0.61-1x3.54|-6.97 =ix1i.63]487

Tu this table, the first column contains the wavelengths of the colours concerned
in vacuum, the next two columns show the reflection coefficient and the absorp-

tion factor acecording to Hagen and Rubens, the third and fourth columns give the
values which | chose for the calculation, m is the complex index of refraction
of the pold relative to a vacuun calculated from these values, m' is the
square of the complex refractive index relative to water (m'2 = mz/mg) and

finally A" is the wavelength in water,

Furthermore, I shall introduce a practical abbreviation in the following

discussiont
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Aom 420 438 500 525 550 600 650

ja,|* = 0790 0,805 2,05 3.8¢ 518 70 242

We can now already form a plcture of the energy apectrum of tha laceral radiation
by very small particlas, since this is cqual to the preduct of the concentration,
particle volume and the valua 24w3|a1|2/X'“ .

The following table gives these values, hoth for perfectly conduccing
spherules and for gold spherules:

420 450 500 525

24#3 6

Lru 2,76 x 10'%  &,85 x 10!
A‘

3.81 x 10'% 3,13 x 10'0

2413 2 16 6 16
a |

6,12 x 10 5,70 x 10 7,77 % 10" 11,95 x 10

550 600 650

2417 2.59 x 10 1.82 x 10"®  1.315 x 10'6

a |? 12,37 = 10’8 6.70 x 10'® 3,17 x 101®

)l'

As the unit of length, I have here and in the following discussion, chosen

the millimetre,

With the exception uf the extreme blue and the vielet, the radiaticn by
gold gpherules is stronger than that which perfectly conducting spherules would

l.’.m.it-

One could then perhaps say that the atoms of pold resonate in response to
light waves, best of all to green-ycllow cnes, However, it is thon necessary to
suppose that, in larper particles, they are better coupled with the vibrating
ether than in small particles, since the radiation increases with the volume of

the particles.

Fig.ll represents the radiation of small pold particles and of small,
perfectly venducting particles again in graph form. (The dotted curve pives the
radiation of the latter following the addition of the first magnetic vibration
(afy gection 18).) The last-mentioned radiation follows the Rayleigh law quite

accurately (proportional to l'-a).
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In order ro find the radiation for coarser disparsions also, it is

necesnary to caleulate vy vy end w, which are comprised of sarias in o

1
(nr 52 - m'zaz}. I carried out the calculation for the values of af given
in the firat column of Table ! and, at tha seme time, I calculated a, also
for tha case of a parfeet conductor, taking the sama valua of a2 + Thereupon

I calculated the radiation (87):

2
3 a
24m ] 4 3 2
e B - e la, 1% . (92a)

The particie dismeter associated with any value of a2

can be taken from the following table:

Particle digmeter in upp

ﬁf A= 420 450 300 525 550 600 €50
0.2 44,6 47.8 33.2 55.9 38.¢ 64,0 69,3
0.4 63, 67.6 75,2 79,1 82.9 90,5 98.1
0.6 77.3 82.9 92.2 96.8 101.5 1:10.8 | 120,
0.8 89,3 95,8 106.5 il.,.8 117.2 128.0 | 138,7
1.0 93.8 107,06 } 119,0 125.0 131.0 143.0 | 1585.0
1.5 122,2 £31,1 145.8 53,1 160.5 175.2 190.0
2.0 141,1 151.3 | 168.3 176,8 185.3 | 202,2 | 219,2
2.5 157, 169, 1

The curves illustrating the depandence of the radiation on the particle
diameter are shown in Fig.12, The abscissa gives the particle diamecer in yy,
while the vrdinate gives the total intensity of the radiation R emitted by a
cubic millimetre of a solurion having a concentration of 10~6 (Imma of gold
per litre of water), the valuecs being expressed in parts per thousand of the

intensity of the beam of light transmitted by n squarc millimetra,

The value F, is thns obtained from the figures given on the ordinate hy
multiplication by I03. For purposecs of comparison, the corresponding curves
{only of the Rayleigh radiation) are shown on the aame rcale in Fig,13 for
spherules of a perfect conductur. The diameters for which the muximum of the

radiation i achieved are here proportional to the wavelenpths 1% 5 in fact:



50

20 « 0,324%'

max
Tha maxima decrsase with increasing wavelength in propertion to 1/3' ,

The radlation emitted by gold particlea ls, apart from tha blus and violet,
considerably greater throughout than that emitted by perfectly conducting

particles, Ae stated earlier, it is as though the resonance of the gold atoms
in the yellow had bean added to the 'resonance' of the particles. Tha curve
risas to its highest point for &00uu (hence in tha orange-yellow), The dia-

meters of the particlea giving rise to the most intense radiation are:

420 450 500 528 550 600 650
2n 105 11 110 100 96 13 131
max
A 113 336 374 393 412 450 487
2p
"%?'E 0.336 | 0,331 0.294 | 0.255 | 0,233 | 0.252 | 0.269
Thus 2o . lies, in general, between A'/4 end A'/3 .,

From the curves in Fig.12, one can readily obtain the energy spectrum of

the radiation for given particle sizes. From these curves, tha follaowing values

are found:

20 420 450 500 525 S50 600 650
20 0,262 0.199 0.338 0,546 0.637 0,299 0,138
40 2,10 1.60 2.72 4.62 5.90 2,92 1,35
60 0.2 5.0 8.0 13,7 19.7 12.3 5.9
80 0.4 9.1 b4, 1 22,9 37.8 33,0 14,7
100 1.2 12,0 17.2 27.1 42,3 55.5 29,0
120 12.5 12.0 17.1 25,0 36.0 57.5 45,0
140 G0 10,5 15,0 20.8 27.9 44,5 46,2
[RO 7.9 8,5 12.4 17.1 22,5 33.3 36,8
80 6,3 7.2 10.4 13,8 17.7 25.0 28.0

Using these values, the curves in Fig.l4 can be conatructed,
curves, it is gseen that small dpherical guld particles must appear yellow-preen
in the ultramicroscope,
to yellow and red=ycellow,
is emitted by =zolutions containing particles with a diameter of between 100 angd

[40yu which emit mainly tight of an orange colour,

most intense radiontiovn therefore appear brown in incident lighet.

REPeOnteIRIEITY ol pn

el

Ll.

v 1T 0

The larger they become, the mors their colour changes

At constant concentration, the most intense radiation

The solutions emitting the

From the
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Thut thewe colour phenomena ars governed by the special ostica) hehaviour
of tha gold is apparent if the corredponding radiation curves ara conatructed
from the 'resonance curves' of perfectly conducting spherules, This has bean
1llustrated in Fig,15 for the particle alzes 2p = 100, 120, 140, 160 and 1804,
These are therefore all quite coarse turbidicies, Whereas for 2p = {00 , the
curve climbs quite steeply towards the vioclet, with increasiog particle 8iza,
the curve becomes flatter and flattar and shows a rather weak maximum which, for
a particle size of 180uu, already lies at a wavelength greater than 650uu.

Light trausmitted by particles larger than 100uu is thus in fact quite whita,
with a weak tinge of colour which can be blue, green, yellow or red, depending
on the size of the particle, Actually, at 180y, according to Fig.15, an
orange tinge must have becen fairly clear, but for the fact that here we
restricted ourselves to Rayleigh radiation. If the following partial waves had
also been taken into consideration, then all curves, and particularly the last,

would have flattened off srill more, #s a simple, tough calculation ahows,

Colours similar to those transmitted by the imaginary, perfectly conduct~
ing particies would also be vobtazined fur colourless particles, From the formulae
which I have used, it is readily possible, for example, to evaluate the
phenomena of voloured vapour jets and curves like those in Fig,15 will thereby

be obtained, but for other particle sizes,

i6 POLARISATION OF LIGHT DIFFUSELY SCATTERED BY GOLD SOLUTIONS

We now proceed to the calculation of the coefficients 2, and Py » For

convenience, we introduce here some new expressions

i, B
]
2 = ==, ppoe = (93)
2a 2a
From (62), (73) and (74), it follows that:
u2 m'2 = %y vy =
@y = ﬁu:a—:-z—-—.._.._ ; Pyo= oy T b (94)
m'c o+ I.Sw? ]
and, for small values of o :
2 12 2
] m - |
(5.'2 = —r-l—lz———;--é-—--_ . r’ = l_-;ﬁ. (1 - m'z) . (95)
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Hare Uyy v, and w, are the funetiona of a2 already used in tha
caleulation of a, and Uy Vo And w, are cbrained from aquations (57) and

2
{27) to (30),

From the values of a, and P givan in Tables 2 and 3, {¢ can he aeen
that the second electrical and the firmt magnetic partisl wave can only aeccur
for a very coarwse distribution emitting the Raylelgh radiation, Thay oceur
most strongly at about 550uu. If che ratio Jn/JI ia calculated for 550uu
according to (B2) for the radiation emitted perpendicular to the tranamitted

beam;
2 2
JII |52-P]r ,a2+p11 i
J—- - 2 - 2 N (9 )
1 o, | |
then it is found that:
uz emall 1 2
fi
.III/JI U.016a 0.059 0.642
2o - 131uy 185, 3up

With the help of these figures, the one curve in Fig.l!6 is constructed. it i
now possible and is quite usual to pive the pularised lipght conten of the

vradiatiun in percent; this is:

1 I
In our example, we have:
uz ] 2
P 0. 885 0.22
2n 1313 185, hin
The value I is represented by the second curve in Fip, 16,

I the radiation of a colloidal gold sulution at 90° to the boam pagying
through it is not completely polarised, it fotlows from this that the solution
contaitns particles Lhaving o diameter well above 100p,  For a particiv size of

190utt, the amount of polarisation is 8ril1 about 907,
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873



LT 53
1873
Solurions contalning particles with a diameter abova 100uu ara precisaly
those which emit mainly yellaw and rad radiation. We shall eme in the following
discusslon charc they ara always franaparent to hlue light,

Only particles of hlue gold soluticns radiate light which {s polarised to
only a amal} axtent ar 90 o the tranamitcced heam,

The atatement is to he made only with ravexvations, however, since it
rasta on che assumption of spherical particles. 1In any case, thers are also
blue solutiona which, at 900, to all intents and purpuses radlate pelarised
light completaly, Nevertheless, it can certainly be said that there are no
red solutions which fail, at 909, to give completely polarised light, If
observations lead to any other result (sece, for exampla, Ref.12), then it
follows that the splutions used were undoubtedly inhomogenecus and contained
manty weskly-radiating, but strongly absorbing, red particles and relatively few
strougly-radiating blue particles.

We ghall now proceed to the calculation of the polarisation of the light
at different angles in relation te the transmitted beam. We shall dencte the
anple made with the directiom of the incident beam by Y . In the two main

cases I and IT (section 13), we then have:

I ¥ =

raf=

' ¥ = %-— Y v = pog Y w

Jq 1'2 zii {%?G‘?"T" G?G'T"TY (}p - (l-v )n')} .

> (96a)

I e = 5, g o= Sy v = cos Y , '

ral

é
A' v
R . ’E uu+l s (0 ‘“‘"“')*m“u} ‘]

Since, in the following dincussion, we are voucersiad only with the relative

values -I.“:.lI v We shall valeulate only the values:

) L ety (565)
| 'i:b' h 11 - :E’ s
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Moreovar, wa ahall, as always, restrict curselves to the first terms, It ia

found thats

Jpo- |al = la; = p,) cos le '
(87}

2
Irp ™ 'QI COR Y = g, com 2Y 4 pll ‘

Here a,, 4y, P, are the quanticies for which values are given in Tahlas 1, 2
and 3. By graphical interpolation, from these tables one obtains

2n = 160w 180pu

a, = =0.08 -1 x 0,63 =003 = 1 % 0,47
a = 0.1~ 1 x Q.22 0,12 =1 x 0,30
p, - 0.09 + 1 » 0,03 0.09 «+ & x 0,03

for » = 550uy .

If this is introduced in (97), then JI + JII

dependence on the angle Y , and JI - JII pives the excess of polarised light

gives the total radiation in

over the unpclarised; P = (PI - PII)f(PI + PII) is the percentage content of
polarised light. Since we are only roncerned with the ralative value, 1 have
divided the individual valua ./ by (JI + JIt)QOO ; that is to say, I have
related everything to the radiation occurring below ¥ = 90° as the unit. The

caiculated values are:

20 = 160uu
¢ 20° 40° 60° 80°  90°
Total radiation 0.64 0,67 0.75 (.88 0.97 1,00
Paolarised 0 002 0.06 4.18 0,44 0.62
P 0 0.03 0.09 0.21 0,46 0.62
100 120°  140°  e0®  180°
Tutal radiation 1.06 1,35 2,01 2.76 3.7
Polarisved .80 0.97 0.72 0.29 0
r C.76 0.72 0,16 0.10 ¢
20 = [BOuy
0° 20° 40° 60° g®  9p°
Totul radiation D.12 0,17 .37 0,68 0.95 1.00
Polarised 0 ~0.02 =¢.10  =0,15 +0,06 0,31
i3 ) -0, 11 -0,27 ={1,22 +{, 06 0.3
100° 120 150°  160° 1a0°
Total radiation 1.04 1.31 2,186 3,30 3. 85
Polarised 0.62 1.10 0,65 0,35 0

I .60 .82 1.130 0.10 0
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In hoth nases, the masimom of the polarisation is thus displacad from 90°
to the side ai fucreasing ¥ , in the ooce case {2p = 160un) roughly towards
Y = 110 and in the other case (180uy) towards ¥ = 120° , The fact that
thess partiecular angles are {nvolved prabably lies In the apecial optival
nature of the gold, slnce, for other metals, amuller anglea have usually heen
found uxperimentally. The negative sign in front of cartain numbers in che casel
2p = 180un , indicates that here there iR an oxcess of pelarised light which
vibrates at right angles to the Rayleigh vradiation. 7Tue most atriking fusture
of the figures [found, however, is the wide variubility of walues with the angle
of radiation, In the casv of large particlies, lateral radiation predominates
to a quite extreordinarily high depree, the light beam passing through the
solution geing towards the side., I have attempted to clarify thuse vouditions
by preparing some radiation diamgrams in which I plotted the intensity of the
radiation as lengths along the radius vectors originating from tho particle,
The outer curves in Figs.l!7-20 cut off, from the radii, sections which are
proportional te the total radiation, while the inper vurves similarly pive the
uttpolarised rcadiation, s that the intermediste section of the radius vector is

propoltional to the polarised radiation,

Summarising, we can say that: if the pelarisation maximum of the light
scattered laterally by a turbid solution is displaced towards the vide of
increasing Y , this is a sure sign that the sclution contains very coarse
particled. At the same time, the lateral radiation un the side towards which
the light beam which excites it travels (v > 90°) must then be very much more

intense than on the other side (¥ < 929,

¥Yor purposes of comparison, the rudiation diagram for very fine particles
and aleo for very fine particles of an imaginary perfect conductor has been
congtrueted (Fips,17, 20). 1IF one looks at the latter diagram, it can be geen
that the intensity ratios are just the inverse of those for toarse pold
particles. If there bad buen any possible doubt that the explanatbion piven heyo
of the polarisation phenomena observed by Herr F, Ehrenhaft? and Herr E, Muller
iy vorreet, then one could very casily have decided the matier by comparing,
probably even with the naked oye, the intensities of 1ight emitted at different

anglen,

The cucves Far the gquantity 2 (Figs.21-24) require no further

explanation,
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17 THE ABSORPTICN OF TURBID MEDTA

In order to calculate the absorption, we shall asasrtain how much enargy a
parcicle would dissipate {f it alone were prasent, The coefficlant of abaorp-
tion of the scluticon im obtained from this snergy by multiplication by the
number of particles in a cublc millimetre,

We imagine & spherical asurface of radius r about the centre of the
spherule and let x = 2wr/)' be a very large number, The current denuity of
the energy curxant through this spherical surface outwards is, at any instant:

We muat now integrate this instantaneous energy flow over a one second period

in order te obtecin the intensity of the light., However, according to (2):

2nint] Zﬂint]

Eg = R[Eae . Hy = R[Hge
and s¢ onj where R[] means: the 'real part of'., If this is introduced, the

time integral sought is then found:

t=l
(R, = E figidt = 5[(519%) - (Ew}ll’)] : (97a)
g2l

Here the round brackets indicate that the ‘scalar product' of the two
complex factora is tc be formed, i.e, the product of the twWo absolute values and

the cosine of the phase difference, 1f:

£y, = Eé + iES i H = ﬁ; + iH" o, (37b)

g ¥ [ 4

n

+N |
where Eg, EW

etc, signify real values, then:

(EgHy) = Bgy + EgHy (97¢)

Since, for the scalar multiplication of two quantities, just the game
rulas apply as for ugual multiplication, we shall simply omit the round bracketes
in future., When two complex quantities E and H are multipiied by each
other, in the following discussion this always refers to the secalar product.

According to (4), the complex quantities Hg and Hw can be replaced by iMg
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and iMp » The intenwity of the normal component of the light paasing through
the spharical aurfdce ia then

up o a gercaln numerical factor.

This numerical factor ia ac chesen that the intensity of the light passing
through the solution is equal to ). For Egs Mp ete, from (51) and (52), we
have to write the values E19 + Eﬁa i Mllp + Hwa etc, The integral over tha
spherical surface, which represents the total guantity of light passing through

the spherical surface towards the outside, bresks down into three parts:

-
2n

m
I = ff(aﬂi“so'ﬁwi“ﬂ)rz sin O ddde
0 0

. : i 2 .
Il = (Elthp + E'91M¢a Etpaml‘} - E'px.\iaa)r sin & dody > (97d)

Ok..h_.:‘

T 2
: ; 2a
II1 = f/(Eﬁamwa E\aaluﬁa)r sin U didy
0

o

J

Part 1 contaips the energy current of the transmitted light beam; if it
were barely affected by the particle, then it is immediately obvious that the
value of part I would be .ero. Part III is a positive quantity, namely the
total amount of e¢nergy radiated laterally; it thus givea that part of the
coafficient of abaorption which is to be used in the caleculation of the diffuso
radiation. Part II is negative; it is the total loss in energy of the trans=
mitted beam and thus gives the full coeffirient of absorption governad both by
the diffuse radiation and by the actual absorption of radiant enerpgy in the

particle.

Since we have asgumed that x = 2nr/A' {is infinitely large compared to 1,

then, according to {29a) and (19), we can write!



58

I (x) = sin (x --‘-‘5"-) ; 1! (x)

~{ix

KU(- X)) = e

' KL(‘ x)

o (o)

L £.-ix ]

1f, further, wa introduce the following abbraviations:

A
v

)
v

- AV v+ {
FEETOEED)

= |

At 2v o+

- 'ﬁmiv sin (x-lgl) '

. =ix

2! Y
" f‘r?viv-l-lie 4
-ix

A! Py
R, vy (v S

coB (x-l;l) .\

#

.7

(87a)

{971}

then, for the factors of the scalar products to be calculated, it is found that!

E'B‘ * Et?a "
B -
Es * Toa
= 1(Mﬂ + Mﬂa) -

; + M -
l(M':P sﬂa)

A +C 2aP
G N v v o_
r 33

A + C ar
Z“ v \ i v
r ain 0 ¢

~Te

B + C aF
g <3 v ]
r sin U 3¢
{
m o

B +D ap
\) v 1 v

r sin ¢ 3

&0

B +D ap
*Zvu v oy
r 30
1

= A +D 3P
V+ UV AV Vv
E, T 30
]

N

(97g)
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The light intenalty icaelf can now he calculated:

y (By + Bgdd 0y « M) ) ~ (B + E )ity + Mg )

= (A + C)(B +C ) /3P »P 3P 3P

y vy 4 v ! v _H

- Z"Z“ ‘ (Zﬂﬂll 53*120§¢'a¢)
i 1 r a1in

) Z z {Av + CvHAp + Du) + (Bu + Cu) (Bu + Du) !
v W 7 sin B > (97h)
1 .

3 T

3P 3P 3P AP
) . | )
(33 I T ai’)
= = o * DY, +D) 3P 3P 5P
*Z Z“ 2 (TT ""Tssoauo)'J
1 1

We can now carry out the integration over the spherical surface, This is:

2% an E

7 ap
f J -I;-E gin 8 d%dy = - [ [ B, 5% (ain 0 a—l,li)dﬂdw
0 0 0

? (971)
- 14 T T 2
[apuﬂdadw . _T p 2Py askp
| W W Bin O | Uacpi sindy °
¢ ¥ ' 4 4]
-
Using equation (11), it is found that:
2n 7 ap -E'_PE
-—- gin O
f f(TTE+ " % 5p ) °in dddy
0
27 n
= ulp + 1) f /Pvpp gin & dddy (971)
o0 0



60
Hence, necording (46):

- 0 , v £ u o,

2 2

The same result 1s obtajnad if P Pu are substituted for Pv' P“ .
Finally:

(97k)

& 9 %, 9P WP ap
f f (s'r#"a"a“ia"d"“
6 4
2n apu By T apP=2m
= j‘ P\J -a-;a— dg - [ P\J WP' dd = o " {97m)
0 S d=0 0 0]

The energy current flowing from the spherical surface is accordingly:

w0

2 2
2n Z v ((,;U *OOB 4 C) ¢ (A +D (B + nu)) .‘%%:_:L . (97n)

!

This expression is now broken down into the three parts mentionad sbove:

& -
vzgv + ]!2
I = u4n Z VA B ) S ; = 0

1

L]

o

2
- E ; vIly o+ 1)
II = in '\;(Av + Bu) (L\J + D\j) ——T——.—._

- g Z wle 1)““(19‘“‘ x (a - pU)e—ix) f (97p)

o 2
- 2 - ¥ ]8 I * ’p
111=2nzuc~+ni)“_ﬂ."_*_;)_nl_zu v v
' ]
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If tha number of particles in a cubic millimetra is N y than II gives,
for the ceefficient of ghsorption per millimetre of solution:

[~ -]

A'z v
k = N?TT'J'” Zv(-l) (av—pv) . (98)
|

The loss through radiation alene amounts, according to III, go:

Ll 2
' Alz Iavlz * Ipu'
o= W= ) Wi (99)
]

per millimetra,

The symbol oJm{ ) in equation (98) denotes that the imaginary part is
to be taken from the complex quantity in brackets. The vertical linaes in (99)
signify that the absolute value of the quantity between them is to ba found,

18 ABSORPTION OF COLLOIDAL GOLD SOLUTIONS

For colloidal solutions, we can restrict ourselvas to the coefficients

By 8Byy P o We shall, moreover, us above, introduce the threa values:

% 2 Py
a = -—x , a, = = —— P, ®= == . (99a)
] 2u C 233 ! 2&3
Since, further, the concentration of the solution is:
hnp 333'3
C = NV, y = _7E_ ool
6w
than:
k = CK ,
6o (100)

K = Trenw(— @ = a, * p') "

The value K varies only slowly as the particles become largar when very

small particle diameters are involved,
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Far a very ftine discriburion of the metal in the solution, the celour is
independent of the particle size while the coefficient of absorpciaon is in

aimple proportion to the concentration of the aclution,

This wtatement can naturally apply only up to a certaln lowar limit
where the smallness of the particles ius concerned, since the gold atoms
certainly behave optically in a different way to small gold spherss. 1t would
therefore probably be very interesting to inveacigate the sbsorpcion of sclutions
with the very smallest amicroscopic particles and to follow the process by
which the gold particles are built up from atoms, as it were, using optical

methods.

If the gold particles are larger than about i0uu, then the statement no
longer upplies. 1 have taken, from Tables 1, 2 and 3, the values of a,s a,
and 7 and, using these values, have constructed the curve showing the
dependeuce of the absorption on the particle diameter for each colour (similar
to the radiation curves in Fig.12). From thisg diagram, I then read off the
absorption coefficients for the particle diameters given in the following table,
The figures are in just the same units as those employed for the radiated
cuerpy varlier {p.49). They thus indicate the loss of lipht over a path of Inm
through a selution of concentration 10-6 (]mm3 of gold in the 1 litre of water},
thal is, in parts per thousand, The value of K iy then obtained from them hy

mulviplication by 103.

Absorption of colluvidal peld solutions

|

2 420 450 500 52! 550 600 650

0, 40.5 37.4 54,6 04,0 55.5 16.4 7
20an H2.7 8.8 51,2 76.6 61.6 18,5 B.0
A0, 46.5 42,0 66,0 Bb .5 77.7 25.0 11,3
60y 4E.8 65,4 Hl.dh A8, 4 V6, 1 37,3 16,4
By hiy, 5 44,8 52.5 Bi.O 07,0 05,0 27.1
OO, Gl 41,0 5242 66,3 B2, 2 8h.U 44,5
{2000 b 34.8 42,8 51.2 1.0 Tl 58,7
140, 20,4 29.7 15,9 41,9 48,0 570 ohy i
160y, ¢ 25,7 26,1 3.8 36,0 il d dhal 45,6
180 240 24.8 8.0 33.0 47.0 7.7 16,5

These series of gubers are reproduced praphically iu Fip. 2% as the

absorption spectra for different partivie sized,
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For fine distributions, the familiar #teep ubsorprion maximum of ruby-rad
gold eelutions can be seen in the Rrean at a wavelength of ca, 525uu, If the
Particla alze inecreases, then, at conatant concentration, tha absorption
initially increases over the whale kpectrumi the ¢olour changes bug litcla, but
gradually acquires a thrust in the blue region, whersupon the maximum moves
somewhat to tha tight, A sharp change only occurs when tha particle diamater
bacomes about |00yu. For this particle size, the solution ia viclat, At 120 and
140, we already see the characteristic opectra of deap~blue gold solutions,
while at 160 we see thuge of indigo-blue and at 180 those of graen=hlua solu-
tions. In fact, therefore, with change in parcicle eiza, one obtaing all the
colours observed in colloidal gold eolutions,

It is immediately clear that the colour of gold soluticns depends mainly
on the characteristic absorption of the light in the geld particles. If the
particles were perfectly conducting, absorption would never be observed, Here
the light loss would be dye entirely to light scattered laterally and the
abgorption curves would thus be identical with the radiation curves shown
earlier in Fig,!5 (if the loss associated with the next highest partial waves,
hence the losgs corresponding to the coefficients Py» 8, and Py is added).
These curves appear quite different from the absorption curves of the gold
solutions; they would always represent only quite matt colours and, for an
infinitely fine distribution, the absorption would be zero throughcut,

Nevertheleas, for large particle diameters, the light luss due to lateral
radiation dces determine the colour of the gold solutions, Blue splutions are
comparable with those which radiate a strong red-yellow radiation, It is,
however, of interest to calculate the two sumands of the abscrption ceefficient

8eparately, For the practical calculation, it is found from equation (99) that:

k' = CK'
4 2 3 2
= a2{a 1 1,12 3 ayl?)
(o

2
-f-f—g——v([allz + lpl|2 +-§ |a2[2) .

Up to 2p = 100uu , K' is identical with the value of ¥, calculated in
section 15 (Fig.l4), For large particle diameters, the coefficients Py and
2, arise, although Rayleigh radiation stili predominates up to [80un. The
values of P, and @, wOr coarser particles have been obtained, by yraphical
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interpolation, from Tablea 2 and 3 and K' has heon ealeulated for those
particla mizes for which K is already known, Then:

K' = X~ K' (102)

i the measura of the fraction of the light loat in the particle itmelf, 1In the
following table, the valuea of K" thur caleulated are glven, omiteing the

3
factor 107,

Coefficlunts of pure absorption

2p 420 430 500 525 550 600 a50

Oun | 405 1 37,4 ] 59.6 | 69,0 | 55,5 t6,4 7.0
20up | 42,4 | 38.6 | 61.9 | 76,1 €1.0 18.2 7.9
40pp | 44,4 | 40,4 | 53,3 | BI.9 71.8 1 22.1 9.9
B0un | 42,6 | 40.4 | 59,4 74,7 76.4 25.0 1.5
BQpy 35.9 35,6 | 48,3 | 5B.1 §9.2 32,0 12,4
IOO“U 27-4 28.7 34-9 39.0 39|8 29.5 2505
1200 | 21,1 22,0 | 25,2 | 25.6 | 24.5 18,7 13.6
140un 17,2 18.0 | 20.! 19.9 19,1 11.9 9.6
160uu 14,0 14,8 16.4 16,1 15.2 10,0 8.
180uu | 1.9 12.9 14,1 14,3 13.3 8.8 6.5

These deries of figures are presented graphically in the curves of Fig.26,
These curves for pure absorption always have their maximum in the preen between
A = 525 and ) = 550 ., If Yig.26 and Fip.!4 are compared, moreover, there is
no certain parallel between abeorption and radiation which can be recopnieed,
Thus, for amall particle sizes, when the radiation maximum still lies in the
sreen-yellow, the radiation increases rapidly with growing particle gize,
whereas the abscrprion shows & weak increase, Lalter on, whereas the maximum
of the radiation is disploced to the right, the maximum for pure absorption,
although also digplaced a little to the right, still remaina in the green, How-
ever, in addition to these relatively umall changes, there occurs another which
obvivusly does not depend on the special nature of the pold and which finally
predominates over all others; the coarser the particles become, the lower and
Flatter are the curves, This iy also immediately obvious, eince, when the
particles are guite thick, then finally they are opaque to all tolours and
the thicker they become, Lhe smaller is the sum of the areas casting shadows.
Lf one were to disregard the effect of diffraction completely, and hence were to
caleulate only the peometrical shadows, then the absorption coefficient would

; ~6
he kU = Ny , wherenpon, for a concentration of 10 73
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-6
N o= -%-2—-—-"3- R q = Trpz v (i02a)
TP
whence
- -
kg Nq 10 4 (102h)

Thus, for 2p = 180 , the caleulation would pive: k0 = 8.3 parts per
thousand, and, for 2p = 160 kO = 9.4 parts per thousand, I have rlutted
thess twe valuas of k0 in Figs,25 und 26 also; naturally, these plots are
straight lines. since ko does not depend on the colour. It can be dean that,
as the result of diffraction, the absorption increases cotwiderably, [Furthee-
more, in the yellow and rad, by far the greatest part of che light is removed
from the particles by reflecticn, whereas, in the left half of the gpecirunm,
approximately a half of the light lost is ubsorbed by the particles.

The colours of colleidal gold solutions can be explained by the inter-
action of twe properties of the gold particles, The gold particles have, in
fact, & very sharp maximum of the ubsorptivity in the green, and, secondly, g
maximum of the reflectivity in the red-yellow, Very amall particles reflect
weakly and absorb strongly, sov that the solution appears ruby red, Large
particles reflect strongly and, at the same time, their pure absorption curves
become lower and flatter, so that they make the solution blue, Where the
colour of the largest particle is concerned, that property of the pold according
to whicn it strongly reflects the red-yellow part of the spectrum, alone 1is

decisive, so that ite less intense blue~green cotour arises,

Thig statement, of course, ouly applies under the assumption that the
particles are apherical, However, also in the case of partiecles of leaf or
bar form, it is necessary to distinguish, in an analogous manner, between the

abgorptivity aud the reflectivity of the particles.

The comparison between theorctical and experimental results contained in
the paper was withheld until after the appearance of the work by lerr Steubing,
Nevertheless, {t may be stated here that, scemingly, the knowu uptical properties
of gold in fact also hold where ultramicroscopic particles arc concerned and are
quite adequate for purposes of explaining the opticat propectics of volloidal
Aoiutiona; on the other hand, the theory needs to le completed if all phenomeua
are to be explained and possitly if it is to be developed to cover eilipsoidal

particles (plates or bars) also,
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14 RESULTS
Pl e

(1) The problem of ualeulating the optical properties of turbid madia i
folved by making two wimplifying asmumprions: firstly, that :ﬁn particlam can
ba regarded as aphoricaly #econdly, that the turbidicy {a optlically infinitaly
dilute, The second assumption ia certainly applicable in the case of the usual
calloidal solutions,

(2)  Light emitted by amall particles can be calculated as & sarica of "partial
waves'; in faet, there are two Rroupd of partial waves corrasponding ro the
electrical and magnetic vibrations of the particlea. No matter how large the
particles, only o finite number of thesc partial wavie need ba considerad and
actually the vth elecerical vibration oecurs parallel with the (v - 1)th
magnetic vibracion.,

in the case of collouidal solutions containing very fine particles, only
the firat clectrical vibration, corredponding to 'Rayleigh radiation', makes
any sipgnificant contribution, For colloidal solutions containing coarsor

particles, the second electrical and the first magnetic vibration is encounterod,

(3)  The assumption of perfect conductivity of che aphered, which leads to a
quite unacceptable simplification of the formulae, producaes ancther result,
namely that the vth magnetic vibrarion goes in parallel with the vth electrical
vibration, Accordingly, even in the case of turbidities produced by the finest
particler, in addition to Rayleigh radiation, the firsc mapnetic vibration would
have to be observable and Thomson's law of the polarigation maximum at 120°
would then ensue, Since the assumption i false, the resulc rannot, of course,

be confimed experimentally.

(4}  1f, through the turbid solution, one passes an unpolarised bheam of light,
then the light emitted laterally is completely or partly polarised (never

eliiptically polarised).

(3  Up to a particle size of about 100uy, the light scattarod laterally by
rold spherules is almoat exclusively Rayleigh radiation, with its polarisation
maximum (actually 100%) at 90°. If the purticles are larger, the contribution
of unpolarised lipght at 96° increascs very rapidly and the polarisation maximum
advances: for particte sizes of 160 and 180uu it ldes at 110Y and 120°. Ac the
same time, the {nitial aymmetry of the Rayleiph radiation is disturbed as the
result of the interference of the partial waves; by far the greatest part of

the diffuse radiation goes towards the aide, after which the excited light ray
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eantinues on ita way, In Lho latter connectlon, the light raflacted by apharulea
imagined to be very small and perfactly eonducting would behave in exasctly che
oppaRite way, Large gold apherules which show chia anomalous palarigacion
behaviour have a reddish-yeliow diffuse radiation and golour the golution blue,
No red~coloured parcicles cun he produced whieh behave in thig way.

(6) When the concentration ix maintained condtant, the diffuus radiarcion from
vary fina turbidicy {s propertional to the volume of s wmall particle, In the
care of turbidity produced hy coarscr particles, the diffuae radiation increases
more slowly with incrcasing particle size and Finally reaches a maxeimum, Lhe
position of which depends on the wavelength.  In fact, for turbidicy due to
imaginad, perfectly-conducting apherales, the particle diometer to which the
maximum radiation corresponds is proportional to the wavelength (0,03243%); in
the case of gold spherules, there is no such simple law, but the partigle

diameter encountered always Lie between A'/4 and 2'/3.

(7} The colour of the diffusely=scatrered light for imagined perfoecely-
conducting spherules, also, in the main, for perfectly white spherules, when
they arc very small, is blue-violet, in agecordance with the Rayleiph law
{radiatioen proportional to l'—ﬁ). Larger particles would emit approximately
white light, with a weak, dull colour tone depunding on the size of the
particles. Any optical resonance, which would lead to Stroup emphasis on u
certain colour, iy excluded, at least in the case of spherical particles, and
no explanation of the vivid colours of colloidal solutions on Lhe basis of

resonance ig posaible,

(8) The diffuse radiation of jold particles is, in general, much stronger

than that which would be emitted by perfectly-conductinge spherules ¢f the same
size. Moreover, in finest digtributions, they show a very gharp maximum in the
green~yellow region, Later, the radiation maximum rises uneil very Liiph 1n the
red=yellow. 1TF one wishes to introduce resoiinee, it would then be necessary to
spedk of o regonance of the gold atons, piving rise tu vellow and superimposed
ort the phenomena which one would expect o be associated with colour lons,

coducting particles,

(9)  Bven infinitely fine suspensions of pold particles show fin very sharp
contrast tu the huhauiou; which would he expueeted of perfectly-conducting

particles) a characteristic abisorpt ton depending oaly on the quantity of the
sugpemdled metal {the concentration), but not on the depreo ol fineness ot the

distribution, I would be interesting to investipatoe experimentially the way
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in whieh the siruacion changea as ultimately one cames te axtramely flne parricles
centainipg only a few atoms,

(10) In general, the absorption of colloidal geld selutions dependa on two
propartian of the macallic geld! the absarbelvivy and thae reflactivicy,
Solutiens in which tha diffuse raflaction {a weaker than the characteriacic
absorption shaw the gold particle absarption mazimum in the graen and the aoly-
tions are therefure ruby red. On the other hand, solutions axhibicing satrong
diffuee reflection are closr blue, #ince gold, {n tha main, roflecta red-yelliow
light,

(11) For the sake of complateness of the theory, it is absolutely necessary to

investigate also the behaviour of ellipsoidal particles,



LT

1873

- - - $°zZ
I£5°0 = T - 960°0 | 6£%°0 x T - TE0°0 § SE¥"0 x T — 720°0- | S6£°D » I - 620°0~ | 0°CT
BIL®G x T - 920G | 124'0 x T - 600°0 | £2:70 % T ~ 6£0°0- | %6670 x T - §£0°0~ | S°¥
L6L7L x T - £€€70 | O92°( x T - G60°0 | 40" x T ~ vE1°0- | CS8°0 x T — 921°0- | 0"
[E9°F x T - €£/9°0 § 219"t x T - 090°0 | 90€°1 x T - 01°0- [ 190" x T - ¥11°0~ | 8°0
26Y71 x T — €EZ°0 [ 08671 x T - £087Q | 61471 x 1 - £60°0 | ¢%E°[ x ¥ - 8z0'n- | 9°0
0BQ°L = T — £9£°1 | TLB™I x T - 0SL°L | 0%0°2 x T -~ $£6°0 | 0991 x 1 ~¢92°0 | ¥°0
SIS°C x ¥ ~ 0Z6°L | {£6°G x T - 061°C | 050°Z = ¥ - Z09"1 | €28"1 = T — 058°0 | z°0
OBL™0 x T ~SyC™[ | (6€70 x T - 0881 | 1121 % ¥ = S26°1 | 09%°I x T - OEE"1 0
059 009 055 49
E4)
P109 .
- - S22°0 x T ~ 92070 | 9LL°0 x T — 061°0 | 9°T
6YE°0 x T - €100~ | 66270 x T - 1€0°0 | £62°0 x T - 870°0 | 95z°0 x 1 - <9z°0 | 072
089°¢ x T = 440°G~ | 90%°0 *x ¥ - €90°0 | 10%°0 x T - 8€0°0 | 99€°0 x T — €0%*0 | S
SIL*0 x T - 950°0- [ 99570 x T - 001°0 | 65670 x T ~ v60°0 | ££%°0 x T - BE9'D | 0°1
6Y87C * T — (%00 [ O¥9°0 x T - 35i°0 | 2€9°0 x T ~ s%i‘0 | 01970 x T - 1g8°0 { 87
62070 x T - Z90°0 | 90£°0 x T - y4Z°Q | 66970 x T - ¥ZZ°0 | BIEG x ¥ — 19670 | 9°0
LIZ°0 x T ~91Z°0 §£SL°0x T ~99¢70 | 05470 x T ~gve*0 | 881°0x T - v0°1 | %0
ZIE"I x T - QZ6°0 | €9L°0 x T~ G050 | SS£°0 x T — %8%°0 | €90°0 x T - v0°1 | Z°0
OB[°0 x T - /0870 | 99970 x T — Z09°0 | §£9°0 x 1 - 6250 001 0
00§ 05y 0zYy
J03oNnpuoy 33a33ixg NU
P1O9
oz/'e = o LEIDI44A00 ML 40 SANTYA

™

{ #1981




LT
1873

70

SE°0 = T ~ 092°0 19270 * T - %97°Q ZTe°0 T - g0I1°0 BST°0 x I = ZG60'0 Z
£E20°0 =« T — Zg1*0 £70°0 x T = 517D VIO x 1 - 26170 ¥ZI*0x T - Z0L°0 [
GI0™Q * T — gilL"0 1Z0"0 x 1 - BEI°O 19070 x 1 - 647170 SBO'0 x T - %2170 w
ITlems
X E1) x 0 x W x D
Z Z z z ]
059 009 gss c€Zs NU
%170 x T — gE0°0 $°C
881°0 x T ~ 8EQ°Q 6LI"0 x T -~ £60%0 81170 x T ~ €4070 4
{01°0 x T - £90°0 85G°0 x T - g%0°¢ 65070 x T — £90°0 \ {
IBO'0 x T — [B0Q"0 29070 = 1 - 0%0°Q L5070 = T — BGO*0 !
) L1ews
x _D x _0 ®x _D h
z z Z i
00s 0SYy ozY )
oz
L - % 40 sanva
Nm

¢ 3qel




LY
18713

Table 3

£y

VALUES OF

ey e
Q0 -3 WY
ocoQ
0 L
[ e e
X X X
e} *
o= v e
wy o
B o+ +
r~ ™M oo
(= o
ooo
LI | Ll
oo o
-0
-_— 0 -
-0 o
*® = &
[l = Pl
x X X
[ x
L el ol o]
=~ o
B+ + +
-3 U W
M D
o0Oo
* » L]
oo o
f~ 1 O] o=
o R« B )
— O o0
* ¥ [ ] L[]
oo QQ
= X X ¥
Qo 4 H
(3] I BT IR
3 ™~
2o+ o+ o+ o+
LR IR ATES )
) ¥ O D
cooQ
LI R | *
DO OO
S |
i
& — [Fg }
-
Ll ;3 — ] .
7]

t..Tl-'!l—i
A e
[ . R |
& & 3
ooa
L A
2 X
W L R ]
Wwe
2 . S
WL M
o= ey
o e -
» » .
ood
[ o= 0N
=T N
coo
L I I
[ I B
o X X
(o] X
[ ] vl v red
w0
=B A
wy 2O
o -
- » [
oo
Lo B T T
o M
oo 0
= & &
oS o
o R
o] 9
V) B R R |
'l
3 o+ + ¥
o i
~F @
— OO
L L
(oW e
ND
WO
oo
L] * .
o0 o
x oW o=
N F.3
ol o vped
[Ea]
oo+ 4
[T B o B
e L ]
-9
- L I )
oo o
—
]
-
o] ] ~ ]
el i
]

7]



72

Autlior

F. Ehrenhafc

J.C. Maxwell=Garnett
L. Lorenz

R, Zsigmondy

I'r. Hasenchrl
F. Ehrenhaft
E., Miuller

Lord Rayleigh

L, Hagen
H. Rubens

E. Miller

LT
F873

REFERENCES
Title, ete,

Wiener Sitzunzamber IIa, 112, 181 (1903);
114, 1115 (1905)

Phil, Trans., 203, 385 (1904); 205, 237 (19206)
vied, Ann,, 11, 70 (1880)
Ann, d. Phys., lé, 573 (1904)

Phyaik, Zeitschr., 5, 152, 387, 460 (1504)
(see discussion between F. Pockels and
F. Ehrenhaft).

Wiener Ber., IIa, 111, 1229 (1802)
Aon, d. Phys., 11, 489 (1803)

Ann. d, Phys,, 24, | (1907)

Phil, Mag., (S) 47, 379 (18%9)

Ann. d. Phys,, 8, 1 and 432 (1903)

Ibid, 453

Ann. d. Phys,, 24, 13 and 16 (1907)



