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CONTRIBUTIONS ON THE OPTICS OF TURBID

MEDIA, PARTICULARLY COLLOIDAL METAL SOLUTIONS

1. The various colorations of metals in the colloidal
state have had different interpretations at different times.
Formerly it was assumed that the metals in question (parti-
cularly silver) occurred in several differently colored
modifications. A later theory was founded on the assumption
that the cdlors were based on optical resonance. The
principal proponent of this theory was Ehrenhaft [1].
Recently Maxwell [2] demonstrated that the theory developed
by Lorenz [3] for optically inhomogeneous media offers
an incontestable explanation for the colors of colloidal
metals if the suspended metal particles are very small. For
the case of a fine metal suspension in which the particles
are very small with respect.to the wave lengths and the
distance between them, the theory gives a very definite
absorption curve from which the optical constants of the
metal can be calculated. Although it is very different
from the absorption curve of the solid metal, it neverthéless‘
has nothing to do with resonance in the sense in which
this term was used by Ehrenhaft, Wood and others. Thus
Maxwell-Garnett, for inétancé, freely derived from Lorenz'

theory the red color of many gold solutions which Ehrenhaft



regularly, predominantly in octahedral form, it is never-
theless very possible that upon rapid precipitation from the
solution very severely deformed crystals may form and be
suspended in the fluid as flakes or rods. On the other

hand however, regular crystals may certainly form, as observed,
for example,’ in the beautiful copper octahedrons in the
so-called Avanturin glass. In theory it seems permissible
to substitute spheres for homogeneously developed crystals
such as octahedrons, cubes etc., and flattene& or elongated
ellipsoids for the flakes and rods. I however would like to
mention that tﬁe observations made by Mr. Steubing on the
polarization of the diffusely scattered light, which I shall
refer to again in § 20, suggest that we ére really not
dealing with spheres or similarly structured bodies.

The present work deals only with the simplest case, in

which spherical form may be ascribed to the particles.

Polar Coordinates

2. For the sake of simplicity we shall number the
coordinate axes (x, y, z) of a rectangular system of
coordinates (1, 2, 3). Let r be the radius vector of a
point (x, y, z), let 6 be the angle formed by r with axis 1,

and ¢ be the angle made by the projection of r on the (2, 3)plane

¥



with axis 2 (Fig. 1). Then (r; 6, ¢) are the polar coor-
dinates of the point. Furthermore we want to call the
components of the electrical and magnetic field intensities
., G, G, and 9, 959 in this polar coordinate system.
Then it can be shown that Maxwell's equations take the

following form:

i, 4G, a(r.sin 9.9y) a(r.Hy,)
A 2 B ¥ ) e P s (1]
F r.sm.)(k 37 +A.(E,) 75 Ty
s i KA\ _ 99, d(r.sin & .9,
r.sm.?.(/t- FY, +/‘.Gp) = a",'-—-—aT—""~-
0% | ) = 2059 _ 38, .
r T-(k- LY + ‘I-Lq,) = "a“r -——63-’ i (l)
. LR : d(r.sin 8.G;) 6(:'.0')
— 3. TR P aaie o L. a2l
\i/' ri.sind.op 9t 37 i
= o 4 Do 0€,  d(r.eind.Gp)
- —3. — . ). - i _ - (O AR l cdll B A
) e . r.sind.op Py g or ’
—ren RS _ 0r.Gn 4G
a7’ = ar do

(&)

Fig. 1. Coordinate system

Here k, A, p stand for dielectricity, conductivity and
permeability in the same system. In a nonconducting medium,
ke +_1/v2, where ? is the velocity of electromagnetic
waves in the medium.

By elimination we can arrive at a second order differ-.
ential equation for G, and 9, that does not contain the
other unknowns. This will be done however, only:after we

have transformed the equations for the problem of regular

oscillations.



We set:

G, = E .c2nint, 9, =1 .2int  etc, (2)

where E, and H, only depend on the coordinates and not on
time, and n is the number of oscillations per second.

Furthermore:

4t m?

4t nd g hk—2ain.p.d =
ni.nt.pn wi N L 2 (3)

and here X indicates the wave lengths of the oscillation in
question in vacuum, and m is the complex refraction exponent
of the medium for light of wave lengfh A. In a nonabsorbing
medium (e.g. water), m is identical with the usual index of
refraction, but in metals m=w.(1 —i.x), where v is the real
quantity conventionally called the index of refraction and

X 1is the absorption coefficient.

Finally we introduce the following notation:

t.n.u.d

— =, = etc. (4)
2 i
ﬂl‘" _— (5)
We now arrive at the following equations in which

the quantities £ and ¥ occur in the same way:



atsing. B, = 2@ 2 M) __vf_(ﬂ_;,-;.‘!_ﬂ) ,
z.8in%. By = .‘;4{1 — (= B'ZZ M) |
PSRN S
tsin ., = Q@0 E) 8 r’r) (6)
z.sind. Uy = 25 _ Bw.sind. Ly)
dop =2 )
z. M = 3 %}5" - iljr_ . J

Now we consider a spherical particle of radius p whose
center coincides with the origin and which is surrounded
by the solvent (e.g. water). The fields in the sphere and
. solvent will be designated with the suffixes % and a
respectively, the two indices of refraction will be m and
my e We assume permeability to be the same inside and outside:
M. = pu_ . The variable x has a discontinuity at the surface

L a
of the sphere, since

L Eam,, _ 2n

.-= I-—-r, 2‘¢= i T=Tor’

where A' indicates the wave length in the solvent. The
following boundary conditions must hold at the surface of

the sphere:

Eyom Eyiy Byo= By, } o
(2. ), = (2. Do), (2. M), = (x. ). '



Sblutions of Maxwell's Equations

3. The methods developed by Rayleigh "Theory of Sound"
are used to solve Eq. (6). This has already been done by
Hasendhrl [6] for other purposes. In order to have together
all the equations required for the discussion, I shalllgive
below a brief derivation of the integrals.

As already mentioned, appropriate eliminations from

Eq. (6) provides a second order differential equation for

'Er and M
3’_‘;‘;,,1_"’:)_ :i_:.?.-;? (sm . -a——L’*) ‘
*ﬁ$»3?+"ﬁ—°
2o 2 o 32 ®
+ﬁh'%{+th=&

We can now divide all solutions of Eq. (6) into three
groups. The first group represents the waves due to elec-

trical oscillations of the sphere; it is characterized by:

E:-:i:oy 41[,.=0.—

The second group represents the waves due to magnetic

oscillations of the sphere. For it we have:

E =0, M+0.



The third group contains all integrals of the Maxwell
equations that represent regular periodic oscillations.
They can be found by adding the integrals of group I to
the integrals of group II.

Assuming that we found a solution of the differential
equaéiOn for E., we find the remaining components corrésponding
to group I very simply by the following procedgre: we
substitute M, = 0 into the second and third equations of
system (6) and then substitute for M¢ and Mg the values
from the fifth and sixth equation. We find immediately
equations which can be used to calculate Ee and E¢ from the
known Er’ Now if we have Er, Ee, E¢, we naturally find Me
and ¥, from the two last equations of system (6). This gives

¢

us the following system of equations:

E, ", =0,

PE.E g OE : diz. Ma) _
ax‘——-l-l..a,,—é—.‘)—a;v 9z —I.E,’,. (9)

Ploaind B | oo p _ OB 2@l
az;———-}-.tsml).Ew—a"az, EPe I-E,’.

The calculation is the same for group II. Furthermore

we can calculate EP in general as a sum of terms each of
which fulfills Eq. (8) individually and is a product of a
function of x with the function of the angle 6, ¢. The
vth term is:

7 (v K, (z)
E9= 22 B3, 9).



Then X and P must satisfy the following two equations:

oK, e\ o
e+ (1= L) K=o, (10)
1 ad [. o aP, 1 &P, ‘ ‘
T [""‘ P S| F ey e B=0, (1)

where e, may be any either real or complex numbér. We now
want to use functions of Kv and Pv for which

¢, =v.(v + 1), (12)
Then Pv is a spherical function of variables 6, ¢ of whole
number order v, Kv is a function closely related to the
cylindrical function with broken index (denominator 2).
Equations (9) now give the following solution of Maxwell's

equations:

(') Kr(z) [T
£ = 1 'P,('f,([’),
"y‘, == l—-—. .é"_’_(z) aP
B =S T ae
E(v) - 1 K/ () a8p,
v v.(r+1) z.ond Fop '
M=o,
W I K@ 8P
,'(’ v.(r+1) z.sine g '
J/‘ v) E -——!—_.-.i\:'.gz.)_ a P’
k4 v.r+1) Tz 89

Thus we have found the solutions of the first group

(Mr = 0). But now because of the symmetry of system (6) with

respect to the E and M, we can immediately write the solutions

of group II (Er 0):

-10-



£ =0,

o) _ 1 K@) 9%, (9, . 9)

¢ T+ z.eind de
yg__meﬂ&Lm%%ﬂ

» r+1) z gy ! .
a2 = £ q (9, ), {14)

mﬂ=-wﬁ_”ﬁﬁw.a%
i v.(r+1) z ae’
WD m. b _K@) 8%,

- r.r+1) z.sind  dq

where X and ¢, are any solutions of Eq. (10)'and (11) in
which we can set ¢ = ve(v + 1).

Now we must express a plane wave, namely that which
strikes the spherical particle, with the aid of (13) and
(14). But first we must know the most important properties

of the solutions of (10) and (11).

The Functions Kv and Iy

4. Differential equation (10)

can be solved immediately for the case v = 0. Two particular
integrals are:

Ky(z) =eis,

K,(—=2) = e=i=,

-11-



Furthermore, if we know the vth solution of the equation,
L then by substitution we can easily demonstrate that the
(v + 1)th solution of the equation, Kv+1, can be calculated

as follows:

i e 25— 45, a5)

IF wa ehose Ko(x)= ot%, this recursion equation gives:

pie, SL_C*m!
K (z)=c ‘ST’ e . (16)
Differentiating once and eliminating de/dx and dzkv/dmz

with the aid of (10), we find from (15):

o
e e sv8es o o

,—1(’)".;‘ ( +'d—ll’)- (17)

From Eq. (15) and (17) we find the following often used

relationships:

@v+1)££2=,x

r=1

_-*--;l:—'Kr-f-l
(18)

=(1'+ N.i.K _, —v--:.--/(

v+l ®

A second particular solution of (10) istfound immediately,
since in (10) we have only the second power of x and dz, if
we reverse the sign of K (-z) in the first solution. The
gener al solution'is>thus:

A.K (7 + B.K (-,

Since in the following discussion we will use the

232w



solution Kv(-x) immediately, it is appropriate to write
the relationship that we obtain by reversing the sign of

« in (15), (16), (17), (18):

X (_1:) ey 5'7, o L ) A (19)

» L e =Tt o e
v

e E(=2) _ g
K (=2)=—i. o -k (— ) } (20)
B (=)=t (o F0D 4 k).
SCPRNIN. NN SN AP S SN AT } (21).
—(2'1_'+1)-K"(—1')=i'('"'*'l)'A’v—l(‘I)—_:":'Kr-l-l(_z)'

5. If in expressions (16) and (19), we expand eiz and
e'ixin power series and then multiply and arrange in order
of powers of x, we obtain the power series expansions for
Ky(x) and Kv(-x), which naturally contain a finite number

of powers with negative, whole exponents. We find:

7= 400 v

.oy Sy el =
Av(-t) = 21 .I’-% T F )l (v —p)t2¥

Now, however, it can be shown that:

~{p (=1 .(r+u)! =g(:Lih.U—'+3E;4’+'19"

A TN TP F+n!

This expression is remarkable in that it is always
different from zero and equal to zero in turn up to r =V,

Up to the power m\’only terms of the form z~ " +2u.remain in

the series. If we substitute r = -v + 2u in;o the coefficients

-13-



we obtain:

oyt r=rt8)..rtr—1)

r+m!
=(—1)p+u+l, 1.3.5..@»-2p-1.1.3, f.(.“l‘__‘ -1
2! )
Thus:
” _ 1.8..2v=2u—1).1.8..2pu~-1) _
A'(Z)— ] ,Z}. - (2“‘)!"—"'—"-ﬂ—)-.‘l‘ r+2p
m (22)
rm 400 ’
Y’r(r—'+l)(r—v+3)..(r+v-—l) .
+ 2 r+»)! LR
rmedl )
Likewise:
K (—2)
. 3 1.8..@r—2u—1).1.3..2u—2) _ \
= — (=Y. 2, __._‘_.__.!‘_(2.!‘_)._!_ 1.3..0p=2) vy
R
SN ) ) ) (23)
Y r—r<+1 ""'*‘_3_;'("*'""1_ o T
+ . (r +9)! e i
rmy4

We see that differential equation (10) also has one
solution which can be developed around the zero point into

a power series without negative powers. We will represent

it by I, and set:

LM=1%5@-5t%'

?—i ' i (- 1-)7

(24)

The power series for Iv has only real coefficients:

I (2) = (= 1p. g7 +2m+1
() ;“?‘('l,ll+l)!(2y+3)(2p+b)..('2,u+2r+1)' (25)

-14-



From Eqs. (18) and (19) we find two impoftant relation-

ships:
2y + 1). ——I A+ T,
(26)
v +1). ___(,,+]) f,_l—w.I,_H.

6. To calculate the functions Kv(-x), Iv(x) and their
first derivatives (which alone appear in the final equations),

we use the following expressions:

. B (—2)=— 1 emiz.(l +ig),
]\;(-—1):—%-6-‘*.((1— zz)-{-i..r);
K (—2) = +_l_§.1 e- ((1— )+z z. ( —l—ls-xz))-

. ", @v=1) ..
@1 Ai—ﬂ=(—0~“ = e

v(=1)

2

-(1+ ] (v =)o (= 1 Gt )
All(h-x)(z»—s) (2v—2a+1) 1.8..(20=1)

s,

+i.r.(l +2’Z(§" 1)(:—,0 3;)0((0,1.).2::“) N 11(2:4:1_))}
1(1'(_.,)=+?’,..e-=‘x.((l—x +iz),

B (==t oemin (1= po) 4in (1= {#),

it = B (1= Gt o tin (1= sl

(28) Ky'(—r):—(—i)'.q;..l_'s'—'(m'__..l.).e"iz

zv-H.
v+
: P WS Lind Y 20 o
W+ > 53( Y 2 ke
v—l)(ay—3) (2r—20+1) 1.8..(2a—1)
_(._‘
2 <v-c-1).+'“+ (r—o=1—, kP l
iz ( > (2:-1)(”-3). .(57'-‘2.{'+1')"1".‘5’.?'(9?4’-":‘))] ,

=18«



_u;’ 3 =z 3 ztb 8. % 0. N.
hia) =y '(l“?'as T 5T 'ﬂ+---)'
3 2 4 a 8
Liz)=-".{1 =%, 2 3.5 = 3.5 2°
2 (2) = 3 O T BT T T ET T e AT )
zt 3 g 3.5 =z 3.3.7 a*
2] I €)= ... _———— —— i e
(29) { £ () =, (l TR N TR Y AT T 7!+"')’
e
I[(2)= - .-f-.)_ — (1 .3 RS .85 =
1378 v+ ) 2y #3831 T @R 15 B
— . 35T G
(2r+3uzy+snzy4ﬁ7'TT4"‘J'
i _ 2.z _ 0 3 ! 3 8 z
A (-7-')“'3 '(1 Sogrgi 3 :1‘5!'—4'9*'7?-{-...).
; 3.2 5 ! 5 =zt 5 z°
KO=55-(1- 0+ i T )
ey 4.3 3 8 4 3.5 gt
R O A LY,
(80) _5 3.5.1 gt
2 9118 T Tt 'J'
Il At fy ¥%3 8B
v 1.5..2v+]) 41 23 31
’ _*'_v+5 3.5 z¢
y4+1 (2r+l)(2u+.’>)'51—_” )

These series are much more adapted to numerical calcu-

lations than the finite expressions obtained for Iv and IG

from (24).

them:

(29a)

For other purposes however, we must also know

l,(x) = — cosx 4 2%,
. 8.cosz 8.sinz
ly(z) = —sinz — s
8.sinz 15.co3z 15.8in2
]3(1‘) =4 C08 % — — — T TR

I (z) = sin (z - —"—21) + 2 sin (x - _2” ")

1

. (r+r)! 1
(b=nTrl gr '

-16-



.
8l ‘a)

the solution:

) . cosx sin z

Il (I) = - Sl x 4 "—;"' — -'ii")

3.sinx 6.coax G.sinz
z z? z¥

I'(z) = —cosz +

6.cosz 21.sinzx 45.cosz 45.8inz

, .
[ (#) = —sinz — =~ < o

v+l
¢ .5 ") I
1'{r) = cos (:—:-2-3) +‘?_lrcos(1-— v é-’j)-")
. v+r—1! (y(v+l)+r(r—l)
=r+niel’ or 2"

The Spherical Functions

The conventional spherical functions, which only
depend on one variable (the zonal spherical functions) cannot
be used for this problem. We shall see in the next section

that functions of the following two forms are required for

P (3, ¢)= IT (v).cos &,

P, (%, ¢) = 1T (v).sin F.cosep, Eg%%
v =sind.sing. (33)

The function Hv must, as we can see by substituting the
expressions for P, and P, into (11), belong to the following

differential equation:

Tl =) ) + v+ 1). 1T, = 0. (34)

The geometrical significance'of the three angle

functions found in (31), (32), and (33),:



cos ¢, sin.singp, sind.coseg

is immediately evident. If we call the angles formed by the
radius vector of the point under discussion with the axes

1, 2, 3 (cf. 2) »® 8 8 then as we can see immediately

1’ "2 73’

from Fig. 2: cos &, = cos ¥,
. cos ¢, = sin?.cos p,

cos #y = sin . 8inp = v, (35)
Now we want to collect the most
important equations for functions

of I, - Of course one particular

solution of the differential

equation of the spherical function
Fig. 2. Trigonometric is rational and whole in the trigo-
relationships

nometric functions of the angular
coordinates 8, ¢. Only this solution is of interest.
If we have found it for one index (e.g. v = 1), we can
calculate for all other indices with the aid of the

following recursion equation ~

(36)
dm,,, 41, (
—‘—l—;tL—l’-';‘—;-- +("+2).”’.

This equation can be verified immediately by substitution:
into (34). A solution of (34) for the case v = 1 is then:
L (v)=1. - (37)

"Then using (36) we find:

-18-



Ho(")': 0, Hl(l‘)= 1,
II,=3v,
15 8

3=-»2-.v2—?,
=2 ljv,

r+ by

1N, g, @r=290 gl

M= 2= i o=

v

(38)

Another series expansion for Hv is the fqollowing:

v

(1! Tl oy

2
H = ;- - 1. 5 e
13 u..( } sl (s +1)! (’_2’_1)!2-.:-&1

For the special value v = 0, Eq. (38) gives:
I7,(0)=0, when v is
r-=1
IT Q)= (—1)* "—-;iﬂtﬂ%:r—w when v is
L AL Y B K
(3 (5
and for the first derivative:
4y 7t ¢ + 1)1
(]t e
(dII,) 2/ \z "
) el when v

is

is

(39)

even,
(40)
odd,

even,
(41)

odd. '

Similarly from (39) we can calculate the values of

HV and its derivatives for » = 1.

-1



8. Just as for the above mentioned functions Kv and Iv

we also have for I, besides the recursion equation (36) a

second equation that can be demonstrated as was (36):

di1,_, 411,
= = v -—(w-=-1.I,. (42)

From (36) and (42) we obtain the two often very useful
equations:
aMm,,, _dI,_,
= d; D e

Rv+1).7 e .
: (43)
@Rr+ NI =wIl  +@v+1).17_,

9. Finally the differential quotients of P, and B,

appearing in Eqs. (13) and (14) should be noted here.

P = 1T, .cosit,
aP._ _ d(l' ll) ¢ l
i R .8in )+ Slﬂ‘Pr (44)
_ ér, _di, .cos}.cosq
sin & 0¢ BT ' r-
®,=1IT, .sinJ.cosp,
an, dw.u)
e g r..co81}.coscp.
Y D P (45)
1 9N, d(o. 1) 1,
sin 0'4’ T dr Lk + in &

In particular for the first two ordinal numbers we have:

P, =cos ¥, P, = 3.sin.%.cos ¢.sin ¢,
%I;‘» = —sind, % = 8.cos2 . smr;,

1 8P 1 an,
et 61,7 =0, TS a‘p--d cos i} . c03rp,

B, =sind.cosq, P, = 8.sin*F.sinqg . cosqg,
9% _ cos #.cosg 9% _ 3 sin2 &.sing cos:I
o .cos (g, 5y = 3-sin2d.sing.cosep,
% 1 8%,

T fa —sing, 7—»—:-3 sin.co82¢p.

-20-
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" Integral Values of the Spherical Functions

10. Below we must calculate the total radiation reflected
by the sphere. We shall see that this problem reduces to

finding the contour integrals

3 2x

ffh.ﬂpﬁnﬂJHqu and ijwwwsmﬁ-dﬂ.d¢
Y U v

These integrals can be calculated very easily, for example

by a method used in Maxwell's Treatise on Electricity [7].

We find:

ff]’,.P,..Sinn‘).d:?.d!/ =ff‘.]$,.‘.]3,,.sin F.di)r.dp=0,
vo vo : (46)

2

B P

Plsin®.d®.dop = [[PLsinddF.dg =2x. 20D,
) e

Plane Waves

11. The present problem can be considered solved as
soon as the plane waves incident on the sphere are resolved
into expressidns of the form of (13) and (14).

We shall chose axis 3, in the negativé direction, as‘the
direction of propagation of the plane wdves. We assume the
light to be rectilinearly polarized, and axis 1 is the
direction of the electrical oscillation, thus axis 2 is the

direction of the magnetic oscillation.

=91~



If we again call z the coordinate of a point in the
direction of axis 3, then according to (35):

z = r.cos.’l's =7r.v.

The plane wave is thus represented by the following quantities:

.
R 2aiz
2aint 4

G = Yo, G =G =0,
O =0, B oe— l/,ii:"g”“” ;'.:,n’ 9, =0,

Here k and u are the dielectricity and permeability in
the sense used in (1), and we have assumed tﬁe conductivity
of the medium through which the beam passes (the water) to
be zero, A' is the wave length in the medium (water). Now

if we set (cf. (5))

2917z ai.r.v
= . - ..
1[ A'

=ti.z.v,

then the quantities £, ...and ¥, ..., which were introduced

earlier (Eq. (2) and (4)) can immediately be written as:

E = ¢2vcos, M= i.ei=vsinP.cosep, '
Es= —~civzsin 3, Wy= i.ei-=v.cosP.cosep, (47)
L, =0, My=—=i.ei-*csing, l

But now the exponential function. can be easily develdped

into I and I functions. We have:

re= oo

eirrm Slevg it D),

rm]

(48)

w3



The validity of this equation can be most easily demon-
strated by differentiating with respect to = and v». If we
first call the series f (x, v), then according to (26) and

(43):

8

And finally:
(/.(.1.’, ”))r:u =1
Thﬁs

/'(1-’ U) = gizv,

Accordingly we have the desired series expansion.-for Er

and Mr:

E=N@ryn.o-t. k. p

2zt o

-23-



where P and 9, are the functions defined in (31) and (32).
Now from the values found for E, using (13) we can
find a solution for group I. Furthermore using M, and (14)
we can find a solution of group II; the sum of these two
solutions must then be that integral of the Maxwell equations
that gives the plane wave. We can easily demonstrate by
direct calculations that the resulting series expansions
are in fact identical with expressions (47).
Then from (26) and (43), keeping in mind the dlffer-

‘ R d,l' l'
-l.'.(l' + l) ’ (d.l:' I /v) :t

we can derive the following two equations

L]
XY 2ﬂr+l (.'_l (I(v]l) ., dI, 411,
_‘l_ RTES T} ! ""' dov Rk dz 'T{")=‘0
-3
Sy 2r+1 -1 dl, Jd(e. 1)
.?_' TS ( I" dzv + v dz dv )
(49)
_ , IR S/
= 2y 4 1)av-t, & g

(l)v+1) i'n’

14

by Tgs ]

=1{.z.ei3v,

If then according to (13) and (14) we form for

example:
- -]
By o 2l oy 4 6D,
v(r+l) P
2y 4+ 1 i I, ‘,B,l
+ yr \r+l) T xlsing T(}f'
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then using (44), (45) and (49) we find:

Ey = — ei=v.sin?.

Likewise:

B - 'zy+: et A 8D,
[

ro(p+1) ‘Z.sind B
(-]
N2+l o, 1, 8%,
N A I T -

The procedure is similar for Mg and M¢. Thus for the

plane wave' , instead of (47), we can use the following:

[}
ey I,
E ”Z"Q""‘ 1).i=1. 2% P,

oo
Sﬁ?y+l vl I,’ ,_*_\'7 2v4+1 ., 1, 9%,

o+ K T Ly

l.

- -]
E _Z LI R SR ) 3_5_22»41 i 1, 9%
T 1) ‘z.and O v.r+1) z 99"

1

-]

N1

prats

1

oo

: (50)

v

@+ )i 25 P,

._/'r(v+l) a;sm# e v+ z 08
1
< 1, 61’ .2 1 1] 8%
2r+1 -1, 1 'y 51 [ WP S v .
W =T L Py M z 89 ad ¥ ¥+ 1) Ve sing d¢
1

Broken and Reflected Waves

12. If now we want to express the waves in the
interior of the sphere and those waves radiated outward
from it in the form of (13) and (14), we must take into
account: first, that inside the sphere only the integral

designated I, of Eq. (10) can be used, because all other
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particular integrals for x = 0, i.e. in the center of the
sphere, become infinite; second, that outside Kv(-x) is to

be used because only it has the factor

2xir
c—.’;=e i’

so the components of the electric and magnetic forces

contain time only in the combination:

e'_':li(ul-:,)

which is the characteristic of radiation coming from the
sphere. The radiation inside the sphere can thus be

represented as follows:

B = D>vib,-%-P,

v x? »

Ny
< 1) 0P, 1, R
= N[ b ! ap, 9__ ! ) B,
E"""Z’(wa) Y v(v+l) z.sind Btp)'
1
& b.i I P, 1, 8%
= Ot Ay e, O i, y
E"i— y(# (v+l) z. sm# g rar 1) = B{))’

(51)

1
~( b.i I 9P 1 8,
AP S LI T 1 N -
‘U.”—a—-( Av+1) z.sing Bd+n(v+l) z d.‘i)
1

T Y b,.s I, c'iPr L 9%,
‘ "‘-.}_"(—v(v-f-l)"; +r(v+l) z.siny’ a.p)'
1
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The coefficients bv and q,, to one of which the factor
I is added only to make subsequent equations somewhat more

elegant, can, in addition to the factors a and appearing
b ? p\) pp

v
in the following expressions (52), be determined from the
boundary conditions (7).

Outside in addition to the plane wave (50), which

appears on the wave, we have in addition the reflected

radiation:
o0
] N N ]\’,(—z) £
Era= 'avl°T'])v’ :
1 !
S K, 3 K, R ?
= N[ 8% K'(-=x 8P, p _ K(-2) 0%,
Bou = z(v.(nﬂ)' s T e ral) zLsin aq.)’
1
- a K ar'
_ N[ 0 K(-2 8P, P K, (-= 0%,
E,.—_>_7 (r.(::+1)'_1:-.§in'0"Bqn PR '..6"))'
: (52)
< K. (-2
R
1
e
My, = V(_“___f_ K(-a8r,  _»p,  Kl(=2 avs.)
""__/1_1 v.(v+l)'.c.ail|0'6¢p y.(n-+l)' £ 59 )’
oo Y al'g
AU . S PR B LS Gl ar, P K= x) 3%,
J""“ Z( yr+ & ‘69 r.r 4+ )' x.sind '_6q> *
1

Determination of the Coefficients

13. We have called the radius of the small sphere
p, the index of refraction of the medium (water)amo, the

complex index of refraction of the material of the sphere
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m. Further we use o and B for the quantities z, and . for
the special value » = p , and we use m' for the relative

index of refraction m/mO:

=2n.m.e  2mp
@ == "3 n l
.‘.= 27!_:}1”.9 =_"f?_,“=”!"”. ’ B (53)
d ‘IH°
Finally we use the abbreviations:
I ()= 4, I (@) = d,
]'(ﬂ) = l]“ [v'(ﬂ) = ‘B”i (54)

N(—a)= C, K (—da= ¢
Now we introduce into the boundarY_Conditionéz
(Ey + EJ u)r = g-' = (b‘lﬂ)r =0
(£, + Bpa)r =g = (Epidr = e
«. (ﬂl,} -+ J,Iga)r-.-: a = ﬂ . (1][,“), =py
(Mot Moa)r o= 8. (M) mgy

the expressions (50), (52), and (51) and find, since two

pairs of these equations are identical, for a., b
v V, Pv: q\,,

the following conditions:

—(9r v A L Gy B
(""+l)" * o +a,' p —,v' r_;"y
- (2" + 1).‘.' ° A' + al C = I’Y'BV’
Dy L 4. g'.: _B-
(-’+1) A a +P, « 7y 5

@y + 1)eiv. A +p,-C =g, B .

From this it follows that:

. A.B,.f-B . 4,

",=+4?"+1%"'dluig_inoﬁ:’ | .

. . A,.BS.8-D,.4, (55)
pom= @ i sl o |
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Equations for Practical Calculations

14. The equations in (55) at first glance appear to
be so simple that it is difficult to discuss them. In the
case of a metallic sphere, the problem is complicated by the
fact that B and of course Bv and BG are complex quantities.
But even in the case of nonabsorbing spheres, where B 1is
real, there remain two quantities that are always complex,

namely Cv and CL’
If the spheres are not very large, it will always be

most comfortable to calculate with (27), (28), (29) and (30).

Accordingly we can set:

av+1
A =TTy

av 4+ 1
Bo= @y o

: o 1.8..2r — ,

C=(iy = fmtoenindy pia k) (56)
4 = e
B = ﬁ%?%%gﬁyyb

("' ES wm )n.(_ l')' 1.' 3. '(2’-,” %
Wt

e~ ia .(/lv' + i((.k")_

The factors fv’ f& are rapidly converging power series

2

in a%; gy» 96 are the same series in BZ; hv’ kv’hs’ ks

are finite power sums in az, thus all expressions which are
relatively easy to calculate. They can be obtained directly
from Eq. (27) to (30). All these sums fv’ 6, etc., bégin
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with term 1, for a sphere whose diameter is small with
respect to the wave lengths of the light inside and outside,
thus they all are very close to 1, and one obtains very
simple expressions for A, s AG etc. If we substitute

(56) into (55) and write for brevity:

fv’ - /p:‘.grl hy+1-ﬂ.k, _g_'_'

u = e"°-7,-'rm' MO w,=mk7"9' , (57)
F_’Z::=m'3, ) (58)
then we find the following practical equations:
2ot ‘2
a,=(— 1)"‘-*’:"1'ﬂ:.—.m'""’,‘,,.'f?}f. _
v )
p=(=1)y "tl'v.wfig:—lr'"f 'rlﬁ"" 9)
1+ -—ar

» 1 4

15. It is not difficult to evaluate approximately
how a, varies with increasing particles size. For small
a the f,, g, etc are all rather precisely equal to 1 and

consequently we can use the approximation equation:

~gtit,PEY G
a~a P I T e v
I,-
C ot 2 e [jr-1 l (60)
» * ,+1 3 .
m'? 4 -~

"Here C‘\1 is a complex number whose absolute magnitude is
~not very far from 1 [8]. While a,, as (60) shows, first
increases with the (2v + l)th power of a, for lafger values
of o the a,, curve bends and never goes below a certain value.
This can be seen if we take from (29a) and (19) the values

for Iv and KQ for very large arguments. Since a is real
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and B = B' - I-B'' is complex, we have:

K(—a)~e—io, K'(—a)~— i.e=ia,

I (@) ~ sin (a - 1-23). I’ (@) ~ cos (a - ”).

¥y )
-

rax

g -r‘.(.ﬂl-;—r), 178 ~ : v -ri(«.ﬂ‘-T).

-

L) ~—

[ -

Thus if we substitute this into (55), then as a limiting
value for very large a we find:
a~(2r+ .e,

c=L°“—-(sin(a—%'-)+i.m’.cos(u—"—o’1))-. (61)

= T ;
Here CV is a complex quantity varying periodically with
o, whose absolute value always remains in the vicinity of
:

2v+1 appears in (60), but in addition

Since the power o
the denominator increases rapidly with v, a; must first
far exceed all other coefficients. But as ay approaches its
limit (61), a, becomes significant, while all others still
remain small. Later asg joins the other two, etc. It can
be seen from the equations for fv, g, etc., that Eq. (60)
remains approximately valid for the subsequent coefficients.
From this discussion it follows that, no matter how
large a, beginning with a given v, all coefficients
remain so small with respect to the first that they can

be completely neglected.
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The radiation reflected from a small sphere essentially
comprises a finite number of partial waves, but the
number of partial waves increases as the sphere becomes
larger.

This statement is first proven only for the "electrical
oscillations” of the particle which correspond to the
coefficients a,s it Qill also be confirmed for the '"magnetic
oscillations," which the incident wave excites, i.e. the
coefficients P, which we shall discuss in 1&.

In the numerical example shown below, I shall take a
diameter 2p = 180pp, in order to show the optical properties
of colloidal metal solutions in more detail. This value
is within the range of microscopic resolution, thus it
corresponds to the extreme particle sizes of colloidal
solutions. Even for the large diameter 2 p = 180 uu,
beginning with v = 3 all higher "electrical particle
oscillations"” are vanishingly small with respect to the
first two, so we only need to calculate ay and a,.

On the other hand, e.g. in the rainbow problem, which
can be considered with the method used here, a rather large
number of partial waves would have to be taken into account
and would result in considerable difficulties in calculation.

The first two coefficients are:
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m'?!— v,
—_—_t
’
w2+ 2,

az=—-:;-'a5:u ..'_&r’_, (62)

3 i 3
m*+ < @

3
a=2¢ T

If « becomes very small, then the u, v, w can be taken

equal to 1 and we find:

A’y =1
a, = 2, ¢ —m—
1 = « wiy g’
s m't—1

(63)

L Aymm— —

t
(14 u’

w4

For small o, .naturally, a, is vénishingly small with
respect to aq, and only that first partial wave remains
whose existense was first demonstrated theoretically by
Rayleigh, and which I shall consequently call the Rayleigh
radiation for short.

16. We shall also consider briefly the special case
in which the sphere consists of a completely conducting
material., This case was firét discussed by Thomson, and
Ehrenhaft thought that the theory developed by Thomson
could be applied to the optics of colloidal solutions.
Although this does not follow for reasons discussed in
§1, the case does have a certain historical and theoretical
interest. We set:

mi=—i.c0o (cf. (3)),

and accordingly neglect in (55) the terms in a with respect

=%



to those in B. Then we find:

a,= (24 1)eir A7

v

Then for small o:

: . 2v41
a'==(._|)v-1.!’fi}__1_772_:__.____.¢ia. S
v N3 (2r - 1) h+ta k,

For large o, (19) and (30a) give:

a,=(2» 4 1). {7+, ¢in sin (a-— * ! :r)-

The absolute magnitude of this quantity oscillates

regularly and periodically between zero and (2 v + 1).

The Rayleigh wave is of special interest here. The
exact value of ay is:
a = 3. ela 10080 = (1 —a%. sina
1 a4+ (1 — ¥ (64)
For infinitely small o we find:
fll = 2 . a’ . (6 5 )

The characteristic difference between this equation and
(63) is that the factor (m'2 - 1)/(m'2 + 2) appears which,
as we shall see, can be set approximately equal to 1 in |
metals and which in any case varies severely_with wave

length. Another very important difference is that in (65)

ay is a purely real number, while the ay calculated
correctly from (63) has a substantial imaginary component.
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This component, as we shall see, determines absorption in
the colloidal metal solutions.

17. We now discuss the ''magnetic oscillations," i.e.
the coefficients p,- For the smallest particles equation
(59) cannot be used, since (1 - vv) then approaches zero.
According to (57), (29) and (30) we have:

1 ’ #
1 - vv- ’,'.g."(fr 'yv—/:-'yv)’
] —pu - =0t 1 (,__ 1 a3 -
T+ D@ +8) gt P T
. ) ' 66
R S ) LB6}

G +oer+n T T

- f-a A
C+DCr+38) [,

+

Here Zv’ as did the fv’ fG etc, indicates a rapidly

2 and Bz, which for small

converging power series in a
particle dimension is equal to 1. Furthermore we set:

I,= eie.lr, ! et

9, M)+ duk) v [ .9, ! (67)
and Eq. (59) gives for Py

(-1 n27+8 Com't - L
7’-’:.(2'+3)°T’._:«s'.‘."(2u-‘i)'i"vi +.-+1'_ ) (68)
R I 4

@,

For very small diameters we can set approximately:

= ,___L:-!’:__--..; -ff:L_.(,,,'l - 1) 69
D= N 3 T, @ = 1) ' (69)

For large diameters, when the quantities Av’ A% etc. (54)

are calculated according to (39a) and (19), (55) gives:
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»’, sin (n - ﬂ) + 7. cos (a - ﬂ)
p,~(2u+l).i'.e"“w——————-—————.-z--»- . (70)

Thus the curve of p, can be described just as was done
in (15) with the a,-
For small particles p, increases with increasing particle

size approximately:

c,’
12 = DL @y + 1) 20+ 8) (71)
C"_-— (m" 32— 1) (= 1).

p,~ (e=r+d,

The absolute value of CS is very far from 1. For
larger values of a, the p, curve bends and varies periodically
for very large o with further increase in particle diameter:

P~ @r 4 1)e) (72)
Cs is a complex, periodically varying number whose
amplitude is not far from 1.

The same statements are valid for the magnetic partial
oscillations as for the electrical, and indeed the v th
magnetic oscillation runs approximately parallel to the
(v + 1)th electrical oscillation. .

By comparing Eqs. (59) and (70) with (60) and (61) we
see that the absolute value of P, in general lies somewhat
below that of Q.-

The first magnetic partial oscillation is, for example,

always of the same order of magnitude for all particle
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sizes, as is the second electrical.

Very small particles always radiate sidewards only the
Rayleigh wave, for the very coarse particles in a colloidal
solution the second electrical and first magnetiec partial
oscillation are also Qf concern.

Thus I shall have to take into account in the numerical
example to be discussed below only three coefficients in
all, namely: a;, a, and pq- And indeed I shall calculate

Py for coarser particles according to the following equation:

1=
n==2.a%u —=L !

1+ 2, (73)

where Uy, vqp, wp are the same quantities as in (62). For

small particles the approximation equation

m=—§';~-(m’—1)- (74)

is valid.

18. While the assumptioﬁ of complete conductivity in
the electrical partial oscillation lead to results very
comparable with theoretical predictions, for the magnetic
os;illations it produces completely deviant results. If in
(55) we assume B infinitely large, we find:

A

- 1v .
, (2r4+ 1. o

Thus according to (27) and (29) for small diameters:

2r+1
— r—l._..i.-_.. 3 f'
})y='( 1) 1. 84, (2v = 10 h,+ialk,

e N o OBy

==



a value which is of the same order of magnitude as the value
of a, found under the same assumption.

If we assume that the spheres suspended in the medium
are perfect conductors, we come to the opposite result that
the magnetic partial oscillation of the vth order goes
parallel to the electrical partial oscillation of the
same ordinal number (instead of the next higher ordinal
number). In particular for very fine particles we thus
come to the false result that, besides the Rayleigh wave,
the first magnetic oscillation appears approximately in the
same order of magnitude.

Thomson, who first proved the last part of this theorem,
has of course shown that the study of polarization of the
light scattered laterally by colloidal metal solutions
demonstrates that the result is erroneous. The characteristic
polarization phenomena observed by Ehrenhaft [9] and Miiller
[10] are no proof of the partial validity of the aséumption
of perfect conductivity. We ghall see below that the
phenomena are clearly explained by the exact theory.

For the sake of the following numerical discussion, we

note the value of Py’

sinw — 1. cosm

1l +1n : ; (75)

p,=3.cie

For small o:
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p=c. (76)
If we compare (76) with (65), we see that the amplitude
of tﬁe magnetic oscillation must be exactly half that of
the electrical for very small, perfectly qonducting

particles.

Partial Waves

19. For the following it will be useful to have an
idea of how intensity and oscillation direction of the
individual partiéi'anésh(particuIarly'fﬁé.first) vary
from point to point to point on a large sphere in whose
center is found the particle under discussion.

The componehts € and §, must not be taken into
account, because they.do not participate in energy transfer
outside, according to the Poynting theorem. Thus on the
surface of the sphere there afe only tangential components.
~ But now according to (13) and (14) we have for each-partial
wave:

By My + E,. 0, = 0, .
i.e. the magnetic lines of force on the surfa;e of the
sphere are always normal to the electrical. Consequently
to obtain a clear representation of the radiation. it is
sufficient to define the electrical lines of force on the

surface of the sphere.

.



QW

Fig. 3. First electrical Fig. 4. First magnetic
partial oscillation partial oscillation

Figures 3 - 10 show the electrical field lines on a
surface of the sphere sﬁrrounding the particle for the first
four electrical and the first four magnetic particle
oscillations. The plane of the diagram is the (1.3.) plane,
i.e. the plane of oscillation of the light beam generating
the waves. It is the only plane of symmetry involved,
and the planes behind the plane of the figure can bé easily
added to the hemispheres in front of those shown in the
figure, since the curves on both are congruent. For the
magnetic oscillations_Er = 0, so the lines describe closed,
spherical curves, and on each of the two hemispheres at the
'equator (6 = m/2) there are v central points in which the
force is zero and about which the field lines curve in v
different groups . In the electrical oscillation;, on the
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Fig. 5. Second electrical
partial oscillation

Fig. 7. Third electrical
partial oscillation

ﬁ:”m%
A
"INl

Fig. 9. Fourth electrical
partial oscillation

__-—

<

7

Fig. 6. Second magnetic
partial oscillation

Fig. 8. Third magnetic
partial oscillation

Fig. 10. Fourth magnetic
partial oscillation



other hand, the lines of force lie on certain conical
surfaces which-all pass through v conical diameters lying-
in the plane of the drawing. The indicated curves are the
intersections of these conical surfaces on the sphere.
These curves all spread towards the v poles cut through the
v diameters. In reality the lines of force bend out of the
spherical surface in order to be included in the interior
or the exterior, depending on the phase of the oscillation,
since they naturally can have neither beginning nor end
(with the exception of the lines directly on the radiating
particles).

We can now easily construct a picture of the magnetic
lines of force. The figures of group I immediately show
the magnetic lines of force'of group II and vice versa, if .

they are rotated 90°, i.e. axes 1 and 2 are interchanged.

Diffuse Lateral Radiation

20. If we observe at an infinite distance away from
the particle, then we must substitute into (52)
K, (- :t)=;-iz,
as follows from Eq. (19). Furthermore:
K/ (—2)=—i.e=iz,

thus:
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Qair
. ' } 4 c—“":,-'
l'),‘,.‘=+2.4”q.u=—l-é:’ co
o
NI » Law,
D L L N T R
o AP 41} 0 ro(rl) s O
1
Sair
| o (77)
E"‘°=—7.Jlaa=—l-‘;—'
) 2 T
o0
O a, 1 o, . a,\.
Lo \viirtD) "Ene TGy v+ 89 )]
1

Here it is assumed that the light passing through the
solution is rectilinearally polarized, and that the elec-

trical oscillation direction forms axis 1. According to (47):

Reférring to the intensity of the transmitted light as

unity, the intensity of the diffusely scattered light is:

[=-]
A L. \T(WJ_‘»' Lol e L SR
s dnt.rt | \e (v 1) 4O v.v+1) sing de¢ o
‘ (78)
= LISI e B 3R
¥ F A1) Twing T Qg rr1) AN P

In these equations thc straight lines indicate that
the complex quantities enclosed within them should be
considered as absolute values. We recognize from (78), which
was already clear, that the intensity is inversely propor-

tional to the square of the distance r. The two intensities

J6 and J¢ indicate the components oscillating parallel to
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the meridian (Je) and to the circle of latitude (J¢).

Both components in general have a distinct phase difference
which can be found by calculating the phases of the two
complex quantities in Eq. (77). Thus if one observes at

an arbitrarily oblique angle to the beam passing through

the solution, one will obtain in general elliptically
polarized light, assuming that the transmitted beam is recti-
linearly polarized and that the suspended particles are so
large that in addition to the (rectilinearly polarized for
itself alone) Rayleigh radiation, higher partial waves are

also significant.

-

We must exclude however all directions that lie in the
two planes of symmetry 1.3. and 2.3. From the figures of
§19 we can immediately conclude:

If the colloidal solution is illuminated with recti-
linearly polarized light and observed in a direction that
18 normal to its electrical oscillation, the laterally
scattered light is rectilinearly polarized, and indeed its
electrical oscillation direction is parallel to that of the
beam passing through the solution. If the direction of
sight 18 unchanged and the ogcillation direction'qf
the transmitted beam is rotated about 90°, we again obtain
rectilinearly polarized light, but its oscillation direction
has also been rotated about 90° with respect to its previous

direction,
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The first case will be characterized in our equation
by 8 = n/2, the second by ¢ = *w/2.

The simpler the theorcm ahbove appcars to be, the more
important it may nevertheless turn out to be. Observations
made by Steubing (cf. §1) of polarization of laterally
scattered light showed that even if completely rectilinearly
polarized light is used in this way, the lateral radiation
will-still contain a very small component of unpolarized
light in addition to the predominantly linearly polarized
light. I am very inclined to conclude from this, that the
particles suspended in'colloidal solutions cannot be spheres,
even 1f the other optical properties may agree with this
assumption.

The case where unpolarized light is used for illumination
can be rapidly taken care of. We can imagine the unpolarized
light divided simply into two incoherent beams of equal
intensity that are rectilinearly polarized, the one so that
its electrical oscillation direction is normal to the
plane determined by the beam direction and the radius of
vision, the other so that its electrical oscillation lies
in this plane. We then obtain in the radiated light two
incoherent, mutually perpendicular lincarly polarized
components, but in general of different intensity. This

means that the radiated 1light is in part linearly polarized.
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If an unpolarized light beam passes through the colloidal
solution, the laterally scattered light is glways in part
linearly polarized (never elliptically). And indeed the
electrical oscillation direction of the polarized component
18 either normal to the plane determined by the direction
of the beam and the radius of vision, or it lies 1in ihis
plane, depending on the size of the particle and the direc-
tion of sight.

This theorem is of course proven only under the assumption
of spherical particles, but it is not doubted that it 1is
always valid in case of amoerphous (thus not dichroic)
colloidal solutions.

In solutions with very small particles only the first
mentioned polarization direction is of course observed, but
fbf coarse particles, as we shall see, the second may

also appear.

Intensity of the Light Scattered

Normal to the Transmitted Beam

21. Since in general we observe with unpolarized
light, we are only interested in the two major cases:
I. 6 =mn/2, II. ¢ = #n/2. 1In both cases E¢ = M, = 0, thus

there remains only Je, which we will distinguish in the
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two cases as Jg and J J1 is the intensity of the

I1°
radiation whose oscillation direction is normal to the
plane of vision, as we shall say briefly. JII is the
intensity of the beam oscillating in the plane of vision.

Initially (44) and (45) give for the two cases:

. = —7: v sing =, l
ap, . 1 o, g 79
=), gy Gy = e M. [ (79)
1L fl’=i7._:r sin ¥ =4 v, l
ar L a1 9%,
gl + 81 =¥, 11 () =2 11 (v}, dnd bg = F I (v). ‘ £80)

This must be substituted into (78). First we want to
limit ourselves further to the case where we observe only

normal to the beam. Thus we set v = 0 and now use Eqs, (40)

and (41). We find:

[} .2

$a¥ R 2fe T\2(rt 1)
1

oo L] ‘ (81)

o= phie Dy S (e = )

J, = £ ., S _"."z‘:\,, .(a-_-,,u +I)'_’a)‘ ' 1
I davey T u 20 =1
t |
These equations are written so that two coefficients of
the same order of magnitude appear in each summand (cf.

§17). In the numerical example, as frequently mentioned,

I can 1imit myself to the coefficients ay, a4y, Pq- I shall
calculate with the following equations:
J, = 41;‘: 2 ‘!'(;."" :" l
ntaE o2, 82
_ e ., 10 2 I ( )
n 4a2p B |-



Jp7 now has a significant value only for the very largest
particles, and even there J1 predominates. Its value is

that of the Rayleigh radiation intensity, and it is at a
right angle to the electrical oscillation producing it that

it has its maximum. Under other angles its intensity is:
J=J, .sin? &

and its total radiation is accordingly:

]I‘=J1.2nr".fsin’e‘}.r[.‘ = -?,3" -r’.Jl.

0
Accordingly if the Rayleigh radiation is measured in the
principal direction, J1, We can find its total, i.e. the

loss experienced by the light beam passing through it.

Below we shall always give the quantity:

_ 2 g la |
]l)—a—"—-). . !

| # (83)

which at the same time is the measure for JI:
h= g (84)
We shall see in §26 how to find the total contribution

of radiation II.
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Radiation of Many Particles

22, Previously we have always restricted ourselves to
calculating the light diffusely scattered by a single
particle. Now we want to consider the case where very
many particles are finely distributed in the medium, all
of the same diameter 2p and with the same optical
property m'. Then each individual particle is impacted not
only by the directly transmitted beam, but also by the
light scattered diffusely by the other spheres. The
effect of this second ether oscillation on the events in
each sphere and the resulting change in the total lateral
radiation has been studied experimentally for the smallest
particles by Lorenz ; and Maxwell-Garnett has calculated
the consequences of the Lorénz theory for the optics of
colloidal metal solutions (cf. §1). It is found there
that the suspended particles must be closely packed in
order that the reaction of the lateral radiation should
have a noticeable effect on the radiation itself.

We shall consider aqueous colloidal metal solut{ons
as optically infinitely dilute, and the total lateral
trradiation will be calculated simply by multiplying the
radiation that would be scattered diffusely by a single

particle by the number of particles.
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If any doubts remain about the validity of this assumption,
they can be tested experimentally very easily by diluting
the solution a bit furfhcr. If{ our assumption is correct,
the color of the solution will remain unchanged, absorption
in all parts of the spectrum being proportional to concen'
tration. If on the other hand the assumption is false,
the color must change, as Kirchner and Zsigmondy observed
in concentrated gold solutions in gelatin (cf. §1). So far
as I know, no one has yet succeeded in obtaining concentrated
aqueous solutions of this type. In any case I shall 1limit
the discussion to conventional dilute solutions.

In the following the conceﬁtration of the solution will
be given in cubic millimeters of metal per cubic millimeter
of water. If the number of particles in a cubic millimeter
is ¥, their diameter 2p, thus the volume V = 4np3/3, then

the concentration:

Lo e
C=1\.I=E—";-J\7.(13. (85)

On the other hand, according to (83) the total Rayleigh

radiation is:

thus:
kR=F.C, (86)
where Fq indicates a quantity that is independent of
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concentration but dependent on particle size and wave length.
We shall use two different equations for this quantity Fi,

depending on whether the particles are small or large:

¥ 21 - a4

| - B gl \ (87)

1,
T o1
2

l' (l." 1

O T
F o= !

(88)

Y,

For this reason the first equation is especially
convenient for small particles, because, as we shall
see, a, increases in proportion as a3 for very small spheres.
According to (62):

a, w't—

== e ’
2l Tyt 42 w,

where Uy, V1, Wy take the value 1 for very small particle

diameter. Thus:

240 L m':—p *
F) = oy =t (89)

e C bt e

and for the smallest particles:

5 2nd . [ mP=—1
Vg

1= e e
cm 42

(90)

This equation (90) is none other than the well-known Rayleigh
equation [11]. It says that, for constant concentration,

the radiation of a solution is the greater, the larger the
particles. Indeed the. intensity of the radiation is

directly proportional to the particle volume. Furthermore

in general the short wave beams predominate, when the factor

2

(m! 1)/(m'2 + 2), which depends on the optical properties

of the spheres, does not vary much with the color of the
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light. But the latter presupposition does not apply in the case
of metals; the light which is diffuscly dispersed by colloidal
metal solutions with very fine particles is generally not blue,
as is true of other turbid solutions, but has the color
characteristic of the metal. If (m’2 - 1)/(m'2 + 2) is
constant, the well-known Rayleigh law holds, which says that
the radiation is proportional to A'—4 for various colors,
all other conditions being equal.

Equation (88) allows us to apply the law for Rayleigh
radiation in the range for very coarse particles. As we
have seen (§15), ay for very large particles varies as a
periodic function of particle diameter with constant
amplitude. Accordingly from (88) it follows that for
constant concentration Rayleigh radiation’decreases with
increasing particle diametcr, so long as the particles are
large. Indeed the Rayleigh radiation is finally inversely
. proportional to particle volume, with the exception of
periodic oscillation.

I. Given constant concentration and a very fine distri-
bution, the Rayleigh radiation increases as particle
diameter increases, approximately in proportion as the
particle volume; however when the particles have become
quite large, it reaches a maximum and then decreases rapidly
if the distribution becomes increasingly coarser; weaker
and weaker maxima may still appeaf periodically. .

II. If the small spheres comnsist of perfectly conducting

=5ya



or perfectly white material, the particle diameter for
whieh the radiation maximum occurs is proportional to the
wave length, and the maximum value of the radiation itself
'is inversely proportional to the wave length.

The second theorem, which follows directly from Eq. (88),
is naturally not valid for cblloidal metal solutions.

With some reservations, the appearance of this radiation
maximum, which must also occur in turbid solutions of
nonconductors (mastic, steam, ctc.), although at a different
position than for conductors, can be considered as optical
resonance. We must however keep in mind that this '"optical
resonance'" is only accompanied by very flat maxima, and that
accordingly the energy spectrum of the diffuse radiation,
even when all particles are exactly the same size, will
exhibit only slight increases above an average value, if
the particles have become large. The radiated light will
therefore be almost white in turbid material with non-
conducting particles (stea, mastic), with only a very weakly
evident color nuance. The colloidal metal solutions behave
similarly; as we shall see, for gold, for éxample, the
yellow color is generally evident, corresponding to the

intrinsic yellow color.



Rayleigh Radiation of Gold Solutions

23. I now begin to calculate the optical properties
of a suspension of minute gold spheres in water, beginning
with the Rayleigh radiation. I base my calculation on
the following nhmbers, which are found by drawing the flattest
curve possible through the experimental data found by Hagen
and Rubens [12]. I have only changed the reflection
coefficient in the violet, which Hagen and Rubens have

certainly given as too small [13].

R y.ou I v.x

L (M. . R) (HLw.R) ang.  ang. - L m'? v
420 0203 1,72 0332 1,70 L7047, 170 000 —7.3,20 313
450 0,331 1,73 0838 1,12 1,78—¢.1,72 —001T—4.3,32 838
500 0,470 207 0450 2,02 1,10 -7.,2,02 —1,60 —7.249 374
525 — — 0613 2,28 0,19—i.298 —245 —7.198 393
550 0,740 2,32 0,730 245 0,57T—7.245 —320 —7.1,57 412
600 0,844 2,91 0,850 2,96 0,38 —7.296 —4,84 —7.1,26 450

50 0,889 3,58 0,888 3,54 0,41 —i.354 —6,97 —i.1,63 457

In this table the first column shows the wave length of
the given color in vacuum, the two following columns give
the reflection and absorption coefficient from Hagen and
Rubens, the third and fourth columns the numbers that I
used for the calculation, m is the calculated complex index

of refraction of gold referred to vacuum, m'? is the square
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of the éomplex index of refraction, referred to water (m'z =
= mz/mg) and finally X' is the wave length in water.

Further I shall introduce another practical abbreviation:

T =4 (91)

Then the Rayleigh radiation is calculated from (87) as:

9 3
F o= -'4—"-7.!0‘;’,

1 Ful
m'?—p, (92)
R
The radiation for infinitely small particles is found
by setting Uy Vs Wy all equal to 1. For gold the

following values are found for (&), =(0n"%—=1)/im'?+2):

A o= 420 450 500 525
0,579 —4.0,675 0,802 —4.0,666 0,807 —+.1,180 1,380 — ¢, 1,440
1= 550 600 650
1,925 —4.1,211 1,880 —4.0,391 1,545 —1.0,180

.....

thus in any case very Qifferent from what one would find
for infinitely high conductivity. For perfect conductors
we find from Eq. (65):
() =1

completely independent of wéve length. In general for
metals o, has the form:

o =a/—1i.a]
and ja'=a?+0a¢"* . In order to clearly demonstrate the
difference with respect to perfect conductors, for which
{))=1 , I shall cite the values of ‘a,l* for gold:

420 450 500 325 550 600 650
0,790 0,805 2,05 334 518 370 242
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We can now picture the energy spectrum of the lateral
radiation from very small particles, since it is equal to

the product of concentration, particle volume and the quantity
2427 0, 1S

. The following table gives these values for

both perfectly conducting spheres and for gold spheres:

420 450 500 525
24 n®
e 7,76. 101 585,10  8,81.10%  3,13.10'
24, 7%
e cimt 612100 47110 TIT. 100 1es. e
550 600 550
24 8
il 2,59.10  182.10% 1,315.10"
2 .2%
T .q0 18,87.10"  G70.10% 31T . 10w

i

Here I have chosen the millimeter as the unit of
length, and I will continuc to do so beclow.

With the exception of the extreme blue and the wviolet,
the radiation of the gold spheres is stronger than that
of the perfectly conducting sphere would be.

One can thus perhaps say that the gold atoms resonate
on the light waves and best in the grcen-yellow. We must
therefore assume that in larger particles they are better
coupled'With the vibrating cther than in small particles,

because the radiation increases with particle volume.



R zijold particles
}‘*fﬁ,J;}_?;5~~ghPerfect1y conducting
particles

Fig., 11. -Radiation of an infinitely fine suspension

Figure 11 shows a graphical representation of the
radiation of small gold particles and small perfectly
conducting particles. (The dotted line shows the radiation
of the latter when the first magnetic vibration has been
added (cf. 8§18).). The last mentioned radiation precisely

_4).

To find the radiation for coarser distributions, I had

follows the Rayleigh law (proportional to A'
S

to calculate Ugs Vs Vo, which consists of series in a”

(82 = m'2~a2). I calculated for the values of 0’ given in

the first column of the following Table I, and at the same

time I calculated o for the case of a perfect conductor

for the same az

Then I calculated the radiation (87):

. 24.a% .. iaq | 4
= P47 3 2
# - / T Tt e o, 2

The particle diameter belonging to each value of az

I8 5
20 =—.Va?
N 7
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Table

I.

Values of the Coefficients

0, =a {2

. | Perfect | Gold
! conductor ] azo ST T so0 ]
' . {
0 i 1,00 0579 — 7.0675 | 0,602 — 7.0668 0,507 — £.1,180 |
02 1 L0t —7.0065 U 0484 — 7.0755 . 0505 - 4. 0,743 0,528 -- . 1,212
04 | 1,04 —4.0,158 0313 — 7.0750 | 0,365 — £.0.757 0,216 — . 1,211
0,6 . 0,961 - 4.0,318 0,224 — 4,069 i 0,244 — 4. 0,706 0,042 - §.1,029
0,8 0831 — 7., 0,410 0,145 — 4.0,632 0,106 — 7,0,640 —0,047 — £.0,849 i
1,0 0,638 — 4.0437 0,004 — £.0859 1 0100 - 7.0,566 —0,056 — {, 0,715 |
1,5 0,405 — £.0,566 0,038 — {0400 | 0,013 - i.0,406 —0,044 — /.0,480 !
2.0 0,265 — 7.0,256 0,028 — 7.0,297 0,031 — 4.0,299 —0,015 — {.0,349 |
2.6 0,190 — £.0,176 0,026 — 7. 0,225 ! e —
i Gold
! - s . R AU - 5
550 600 630
o 1,925 —4.1,211 | 1,880 — 7.0,391 1,545 — 7. 0,180
02 | 1,602 —2.2,050 | 2,190 — 4. 0977 1,920 ~ {0,515
04 & 0975 -17.2040 | 1,750 — . 1,874 1,767 — 7. 1,080
06 . 0,057 — £. 1,719 } 0,807 — £.1.980 1,233 — . 1,402
0,8 4 -0,10T - 1, 1,106 0,160 - /. 1,612 0,673 — 7. 1,431
LO 0 =084 - . 1,014 0,095 — i. 1,240 0,353 — . 1,191
L5 1 —0079 —4.0827 | 0009~ i.0,721 0,124 — £.0,718
20 | -0,022 ~ §.0,435 | 032 — 0479 0,096 — 1, 0,471
2,5 — - -
can be found from the following table:
a'  dm 420 450 500 525 550 600 650
0,2 44,6 47,8 53,2 55,9 55,6 64,0 69,3
0,4 63,1 67,6 15,2 79,1 82,0 90,5 93,1
0,6 77,3 §2,9 92,2 968 1015 1108 120,11
0,8 89,3 45,8 1065 11,8 117,2 1280  138,7
1,0 99,8 10,0 119,0 1250 131,00 1430 1550
1,5 229 131,1 158 1531 160,56 15,2 190,0
0 Ml 11,3 1683 1768 1853 202,2 2192
25 1577 169,1

Particle diameter in mm

©-58-

525

1,330 —
0,850 —
0,263 —
—-0,028 —
—0,114 —
—-0,128 —
—-0,015 —
—0,029 ~—

i.1,440
i.1,828
.1,640
1.1,347
.1,061
i.0,855
i.0,554
1.0,395



Curves showing radiation as a function of particle

diameter are shown in Fig. 12,

n

R, R SU PO A .
[7] FLEANAZ AN NV VAN V73 FU ORI 7)) ’*f',’lw

Fig. 12. "Optical resonance" of small gold spheres

The abscissa shows particle diameter in mm, the ordinate
shows total radiation intensity R coming from a cubic

millimeter of a solution with a concentration 10°6

(1 cbmm
gold per liter water), in thousandths of the intensity of
the light beam passing through a square millimeter.

The quantity F, can thus be found from the numbers on
the ordinate by multiplying them by 103. For comparison I
have shown the corresponding curves (only the Rayleigh
radiation) in the same scale for spheres of a perfect
conductor. The diameters at which the radiation maximum
occurs are here proportional to wave length A':

2 0vax. = 0,324, 2",
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The maxima decrease with increasing wave length as 1/X.

0

142ee
Vo il !
S O i dh et

wo s Nr 10 Tl M) RN IL e

Fig. 13. '"Optical resonance" of perfectly conducting spheres

With the exception of blue and violet, the radiation of

the gold particles is always considerably greater than that

of the perfectly conducting particles.

It is, as we said

above, as though the resonance of the gold atoms in the

'yellow were added to the 'resonance" of the particles.

The curve is highest at 600 up (orange-yellow).

of the most intensely radiating particles are:

420 450
2 O\ax. 105 1
X 13 336
Q0.
Max 936 0,331

S

500 325
110 100
374 393

0,294 0,255

The diameters

650
131
487
0,269

Thus meax in general lies between A'/4 and A/ 3.

The energy spectra of the radiations for given particle

sizes can be found easily from the curves of Fig. 12.

The following numbers can be taken from the figure:
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525 550 600 G50

29 420 450 500 5

20 0,262 0,199 0,338 0,546 0,637 0,299 0,139
40 2,10 1,60 272 4,62 5,90 2,92 1,35
60 6,2 5,0 8,0 3,1 19,7 12,3 5,9

80 10,4 9,1 14,1 22,4 37,4 33,0 14,7

100 13,2 12,0 17,2 27,1 42,4 55,5 29,0

120 125 12,0 17,1 25,0 46,0 57,5 45,0

140 100 10,5 15,0 20,8 27,9 44,5 46,2

160 1,9 8,5 12,4 17,1 22,5 43,3 46,8

180 6,3 52 10,4 12,8 11,7 25,0 28,0

The curves of Fig. 14 are constructed with these
numbers. We see then that:

Small spherical gold particles must appear yellow-green
in the ultra microscope. The larger they become, the more
their color changes towards yellow and red-yellow. Given
a constant concentration, solutions whose particle diameter
lies between 100 and 140 uu radiate the most intensely;
their particles send out primarily orange colored light.
The most intensely radiating solutions are consequently
brown in ineident Light.

Constructing the corresponding radiation curves from
the "resonance curve'" of perfectly conducting spheres
clearly reveals that these color phenomena are due to the
special optical properties of gold. I have demonstrated
this in Fig. 15 for particle sizes 2p = 100, 120, 140, 160
and 180 pp. These are already rather coarse turbidities.
While for 2p = 100 the curve increases quite sharply towards

violet, it flattens out increasingly with increasing particle
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Fig. 14. Radiation of colloidal gold solutions

size and shows a very weak maximum which at 180 up lies

at a wave length that is greater than 650 ppu. The radiated
light from particles larger than 100 uu is in fact rather
white with a dark tone which, depending on particle size,
can be blue, green, yellow or red. According to Fig. 15
however, at 180 pup orange must be rather clearly pronounced;
this is associated with the fact that we have limited the
problem to Raleigh radiation. If the subsequent partial
waves were to be taken into account, all curves and
particularly the last would be even more flattened, as an

easy calculation will show.
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Fig. 15. Radiation from coarse, perfectly conducting spheres

Colors very similar to those associated with the imaginary
perfectly conducting particles will be obtained with color-
less particles. Using the equations that I used, one can
easily calculate the phenomena, for example, of colored
stcam; the curves obtained will be similar to those in Fig. 15,

but with different particle sizes.

Polarization of Diffusely
Scattered Light from Gold Solutions

24. Now we proceed to calculate coefficients a, and Py

For convenience we shall introduce new notations:

w1ty = P (93)

From (62), (73), and (74) it follows that:

a e m't— r, rn—-1
= e—e el —- . im iy =
3 12 LTRSS P

hl=rr1-‘+2"“n . (94)

and for small values of a:

-
n? m't =1 e

(UNEES (95J

A, = —-==«
: TR T

Al — m""}.

R
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Here ugs Vg. Wy arve the functions of az already used to

calculate a,; u,, v,, w, are taken from Eq. (57) and (27)

g7 MgE Fps Yy
to (30).

From the values of o, and » shown in Tables II and III
we see that the second electrical and first magnetic partial
waves are significant with respect to the Rayleigh radiation
only for very coarse distribution. They appear most strongly
at approximately 550 pp. If we calculate from (82) for
550 pu the ratio JII/JI for the radiation normal to the

transmitted beam:

Ju = e, 4 bt
7T = e | (96)
then we find:
«* small 1 2
Juldi 0,016 . et 0,059 0,642
20 — 181 nu 155,3 un

‘Onc of the curves in Fig. 16 is constructed with these
numbers. Now as customary we can give the amount of

polarized light in the radiation in percent:

Jy = J,
P= Y17 Y
Ji+ Jy
In our example:
u? 1 2
» 0,585 0,22
20 131 peu 180,3 nu
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Fig. 16. Polarization of light radiated under 90° at the

550 uyu wave length

The quantity P is shown as the second curve in Fig. 16.

If the radiation of a colloidal gold solution is not

completely polarized at an angle of 90° to the transmitted

beam, then it follows that the solution contains particles

whose dtameter is much greater than 100 uu. Given a
particle stze of 130 wu, the polarization amounts to

approximately 90%.

@t
Table II. Values of 0 Wy S
at -420 450 i 500 i 525 550 ' 600 630 |
- § . 1 ) : I B} . .
. : , , ! | )
klein { at x a® x I al x i a? % I a’ ¥ | a* X i al %
0,058 =%.0,053 | 0,060—17.0,052 | 0,087 —7.0,081 0,121 ~7.0,085 0,149—~(.0,061 0,1385—7.0,021 | 0,118—1.0,010
]

1 0,047 —£.0,059 | 0,049—7.0,058 | 0,083 —/.0,101 0JOS—iﬂJ24§0J52—ﬁOJI4%0J57—iﬁﬁ43
N {

(3]

|
0,033 —-3.0,118 | 0,057 ~7.0,119 ' 0,038—+4.0,188 | 0,052—4.0,238 | 0,103—/,0,322 : 0,264 —1.0,261
! | :
| 7

25 | 0,039-7.0,140 |
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Table III. Values of n=7

2.u”

ot 420 i 450 500
) |

523 ; 550 : 600 650

i
i
!
| ;
RPN i w? ; i i n? % atx
0,087 +1¢.0,083 1 0,115-+¢.0,066 | 0,140+ ¢.0,052 1 0,195 47.0,042 | 0,266+ ¢ 0,054

b I
0,0«:3+z‘.0,u-l‘3‘ 0,092 €.0,081 " 0,081 47,0025 0,100414.06,020 | 0,117 +4.0,021

a? X i e X

klei { . ;
N\ 0,03844.0,107 | 0,034 +4.0,111

i

r Coa . :

0,078 +7.0,051 * 0,08T-+7.0.042 0,004 +.0,037 0,110+7.0,036 | 0,123+7.0,041
a2 . ! b

!

| |

1 !om45+aopn5|op45+topun
t

2| 0,084+i.0072 | 0,065+i.0,073
I

1,5 1 0,065+14.0,071 |

Solutions with particles larger than 100 up are now
those that radiate primarily yellow and red. We will see
below that they are always blue transparent.

Only the particles of blue gold solutions radiate light
that is only slightly polarized at an angle of 90° with
respect to the transmitted beam.

This theorem can only be stated with a reservation,
since it is derived under the assumption of spherical
particles. There are in any case blue solutions that
radiate almost completely polarized light.at an angle
of 90°. But certainly one can say that there can be no red
solutions that do not give completely polarized 1ight at
an angle of 90°. If observations give a different result
(14), then it follows that the solutions were inhomogenenous,
that they contained many weakly radiating but strongly
absorbing red particles and relatively few strongly radiating

blue particles.
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25

We now want to calculate the polarization of the

light at various angles with respect to the transmitted

beam.

the direction from which the beam comes.

cases I and II (§21):

I. )= W (,' =
= % i \, y
/ 4’:‘:‘ ‘..’..' {u.(u+1)'”' *
1
I[. (ll = " N 'l}' o=
57 a,

Lo (:—1-1)
Since we will deal only

we shall calculate only the

47, % J
5, =227

3% as '

v (r+1)

We shall call A the angle measured with respect to

In the two major

. 0 U= CON Y

Pl I = (1 —v?). T

b

o M= (L= 11 e T

ror41) f

with the relative value JH:JI

quantities:

~ +ntrt J,

S = g "

Furthermore we limit ourselves as always to the first terms.

We find

Here 0y Oy 3
from Tables I, II and III.

find from these tables:

(97)

are the quantitics whosc values can be taken

By graphical interpolation we

20 = 160 pu 130 v

a, -+ — 0,08 — . 0.63 — 008 = 7, 0,47

0 = 015 — 4, 002 0,12 — 7. 0,30

o= 0,09 4 7.0,03 0.0 L0038
for » = 550 uy
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If this is substituted into (97), then J,+3,

radiation as a function of the angle vy, 3 —S.
excess of polarized light over unpolarized, P
is the percent content of polarized light.
dealing only with-a relative value,
values of J§ by (Sp+ngf

the radiation taking place under an angle Yy

unity.

Total }
radiation
Polarized

P
Total }

radiation
Polarized

A

Total J
radiatios
Polarized

1)

Total }
rawliation
Polarized

FA

0°
0,64
0

0

10n?
1,06
0,80

0,76

100°
1,04
0,62
0,60

20°

0,67
0,02
0,03
1200
1,39

0,97

0,72

20
0,17
—0,02
—0,t1
120¢
1,33
1,10
0,52

i.e.

The calculated values are:

29 = 160 pu.

(&4
-

i

40Y
0,75
0,06
0,09
140°
2,01
0,72
0,36
150 nu.
40
0,141
— 10
—0,27
140°
2,16
0,65
0,30

gives the

gives the total

= (Sl = Su’/sx + Su)

Since we are

I divided the individual

€0° 80°
0,33 0,97
0,13 0,44
0,21 0,16
[T 130°
2,76 3,17
0,29 0

010 0

MV 30°
0,65 0,95

—-0,15 +0,06

— 0,22 + 0,06
160° 150°
1,30 3,85
0,10 0
0,10 0

I referred everything to

90° as

90°
1,00
0,62
0,62

90°

1,00
0,31
0,31

In both cases the polarization maximum is thus shifted

90° towards increasing g and in one case (2p

towards y = 110°, in the other case (180 pu) towards y

= 160 wuu)

120°.

The fact that these are the angles is apparently due to the
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Fig. 17. Radiation diagram of an infinitely small gold sphere

Fig. 18. Radiation diagram of a gold sphere 160 up in diameter

Fig. 19. Radiation diagram of a gold sphere 180 uu diameter

special optical nature of gold., since for other metals
generally smaller angles were found experimentally. The
negativeAsign in front of some numbers in the case of 2p =
= 180 up means that here there is an excess of polarized

light that oscillates normal to the Rayleigh radiation.
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The most striking of these numbers is however the high

- variability of the values with radiation angle. Given

large particles, the radiation toward the side toward which
the transmitted beam is pointed is extraordinarily predominant.
I have tried to make this behavior clear by means of several
radiation diagrams in which I indicated the intensity of

the radiation by the length of the radius vectors emanating
from the particle. The outer curves in Figs. 17-20 cut off
pieces of the radii which are proportional to the intensity
of the total radiation, likewise the inner curves indicate
unpolarized radiation, the intermediate piece of the radius

vector is thus proportional to the polarized radiation.

Fig. 20. Radiation diagram of an 1mag1nary, perfectly
conducting, 1nf1n1te1y small sphere.

In conclusion we can say:
If the polarization maximum of the laterally scattered

light of a turbid solution is shifted 90° towards increasing

T



Y, this i8 a sure indication that the solution contains
very large particles. At the same time the lateral
radiation must then be extraordinarily much more intensive
towards the side towards which the exeiting light beam
passes (y > 90°) than towards the other side (y < 90°).

For comparison I have also constructed the radiation
diagram for very fine particles and one for véry fine
particles of an imagingary perfect conductor (Figs. 17, 20).
It can be seen from the latter that the intensities are just
the reverse from the large gold particles. Should there
still remain any doubt that the explanation of the polari-
zation phenomena observed by Ehrenhaft and Muller is
correct, the question can be resolved very easily by
comparing the intensities scattered under different angles;

this can probably be done with the naked eye.

Fig. 21. Polarization of the diffusely scattered light
given infinitely fine particles
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Fig. 22. Polarization of the diffusely scattered light
for 160 pp particles
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Fig. 23. Polarization of the diffusely scattered light for
180 pp particles
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Fig. 24. Polarization of the diffusely scattered light

from imaginary, perfectly conducting, infinitely small
particles

Curves of P (Figs. 21 - 24) require no further explanation.
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Absorption of Turbid Media

26. To calculate absorption we shall determine how much
energy would be consumed by a particle if it alone were
present. The absorption coefficients of the solution are
found by multiplying by the number of particles in a cubic
millimeter.

We imagine a spherical surface of radius » drawn about
the center of the sphere, and let z = 2wr»/A' be a very
large number. The current density of the energy flow
through this spherical surface towards the outside is at
any moment:

Gy 9, — &, Py,
We must now integrate this instantaneous energy flow over
one second to arrive at the intensity of the light. But
according to (2):
Ep= R[Ly. 2], §,=N[l,.e27n1] etc.
[] means " real part of." If this is substituted, then

we find the desired time integral:

(=1

j( Do) dt = L[(Ep. 1) —(E,. IL,)].

t=0

Here the parentheses mean that the "scalar product"
of the two complex factors is to be formed, i. e.

the product of the two absolute values with the
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cosine of the phase difference. If:
L= Fs4 (. LY, W= 11, +i.1l;,
where'E'e, E"¢ etc. indicate real quantities, then:
(Lo L) = Eg I, + Ly 1),

Since the same rules are valid for the scalar multi-
plication of two quantities as for conventional multiplication,
we shall simply omit the parentheses from the following
discussion. Where two complex quantities E and X are to
be multiplied, the scalar product will always be implied.
According to (4) we can replace the complex quantities #

9

and H¢ by z'Me

components of the lights passing through the spherical

and i-M¢. The intensity of the normal

surface is then some factor times:
By i, — E, .ill,.
This factor is chosen so that the intensity of the beam
passing through the solution is equal to 1. We must

substitute for E M, etc from (51) and (52) the values E

87 ¢

ot Egq» My * My, Then the integral over the spherical

6
E

surface that represents the total amount of light passing
through the spherical surface towards the outside divides

into three components:
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1 =lf6f(E,-,.i.5V,,— E,iM).rtsin%.d9.dy,

a 2
M= f f (Bparidl, + By.iMy, — By o iMy— E,.i My )r*sin & d 3 dg.,

4 0

a

Ul = (Edn'i-:l{nrn - }5',;,. .i.’l/,,,,)rz. sin l')’.lll’).d(/'.
!

Component 1 contains the energy flow of the transmitted
light beam. If it were not at all affected by the particle,
it is immediately obvious that component I would be zero.
Component III is a positive quantity, namely the total
laterally radiated energy; thus it also gives the component
of the absorption coefficient which is used to calculate
diffuse radiation. Component II is negative, representing
the total energy loss of the transmitted beam. Thus it gives
the total absorption coefficient which is determined both
by the diffuse radiation and the actual absorption of
radiant energy in the particle.

Since we assumed that = = 2mr/)' is infinitely large
with respect to 1, then according to (29a) and (19) we

can set:
]"(,z-) & Sl‘n (.7: —-— ﬂ‘?)’ ’ /" lx) = cos (.r — izl),

KN (—2)=ec-i=, K({—e)=—1i.e-ix,

Furthermore if we introduce the following abbreviations:
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i ) 2v + 1 . |
L= - e i .sin e — ;

4 2n v {r <+ 1) 2

. Y ' .
(TR g

! Qa ey 4 1)

'y » ;

[) =2 e e 4 f—‘:

¥ 2an v {(r + 1) !

then for the factors of the scalar products to be calculated

we find:
oy (23]
TA RO a0, 104D 1 R
Bade Byy= Nt e 000 i R P, .l-"v',
o r o P r sind  daop
! 1
(24) .. f< ]
Y P = N Ao+, 1 ar, . NIRB+D, 6%,
T Vg _/_ r =in ¢ 7] o —Y ;‘v r ’ 1
i 1
on on
Y[ ! i I’ v, ), o1
M e M) e NP Al N D, G,
s s r sind diy i r gt
1 .
on =1
Y/ - " v e o}
SO M) ‘/,. - .a’l,. N \".l_.‘i I,,' "l’__ 'o’]_,._
i L s | r o P r sindt G
l i

The light intensity itself is now calculated from:

(B + Eya) i (M + M, ) = (B 4 F, .G+ M)

)y (-]
N0 N b Ol e G (A T Lo,
T _/-l- rd ' k() TN sintd " dgp "o
!

o0 o0
N N S e+ Db - (= Colie 4 DY 1
T ) = " sin
ar, ag., apr, d \Ll,.)
’ ( G ’ o "w d i d

a— c— r
‘1 A

o oo *
\-1 \‘1‘ (R, + [’,.‘| . (.‘l“ + I,I’) i} "E,. 7 ‘l.:n { . 0 \By a \v,u .
+ -T _/‘— T e Naw oo sin?¢ dq Oyg )

We can now integrate over the spherical surface as

follows:
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2x =

ar, 8Py . . .
ffao 5—{’; sind.dddy = — / /P' 8 (sm P), #.dep

J|-7

v 0 u 0
/‘[ap 6R.dﬁ.d¢ /‘[ #Pe d9.de

Erk iy AislY . _ PYCE,

sin & vUog gt gin &
0 ¢
Using Eq. (11) we find:
2r
ag: 21” 1 8P, 3P\ 0 g
ff . ._ 28 Bln"' "' Uq ¥ -(') o ).Sm i .([l".(I(P
-ﬁ b 4

et l)/fP ‘.smafm dy.
Thus according to (46):

=0, r£p
) 1
0 v _{r+l) L
= L. 21+l ’ I——‘u.

We arrive at the same conclusion if we substitute

®, P, for Pv’_Pu' Finally:

- b1

AP, 3% 0P, 3%\ .
f (5% A SR
[V}

De=n

fl "‘1"‘ p—f[,.“"]d.‘r 0.
v

The energy flow out of the spher1ca1 surface is accord-

‘ingly:
2. y“*‘“’ V(B4 C) 4 (4 D) (B4 ) N
2r +1
This expression is now decomposed into the above-mentioned

three parts:

I=14 n.?(.-l’.]}r). S,

I =2x. i»(; + B).(C. + D). z‘”:’l"'
= S et o, = phe)
-2, xn(§5 1" (e, — p
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I =27, M4 02,7 040 NJat+p

9  u. L) .
- 2y 4+ 1 oy —_— 2v+1

If the number of particles per cubic millimeter is W,
then II gives as the absorption coefficient of the solution

per millimeter:

(98)

According to III, radiation loss alone per millimeter

amounts to:

(99)

The symbol Jm () in (98) indicates that the imaginary
part of the complex number inside the parentheses is to be
taken. The vertical lines in Eq. (99) indicate that the
absolute value of the quantities enclosed within them is

to be formed.

Absorption of Colloidal Gold Solutions

27. We can limit ourselves to the coefficients a« 8

1’

P, for the colloidal solutions. Furthermore as above we

2.‘

want to introduce the three quantities



Since further the concentration of the solution is

0= J«—. l". l’: 47.19 = ”"';.I:l

3 6a* !

we find:
k =C. K, ~ \
A = ';’f' m(—e, —a, 4 p). l (100)
For very small particle diameters, the quantity K varies

only slowly as the particles become larger.

Given a very fine distribution of the metal in

solution, the color is independent of particle
tion coefficient is simply proportional to the
of the solution.

This theory can of course be valid only up

lower limit on the smallness of the particles,

size, absorp-

concentration

to a certain

since the

gold atoms behave differently in the optical sense than do

small gold spheres.

It would therefore be no doubt very

interesting to study the absorption of solutions with the

smallest amicroscopic particles and somehow to

follow

optically the processes by which the gold particles are

constructed from the atoms.

If the gold particles become greater than about 10 uu,

the theorem is no longer valid.

a, 0, P

<78 =

I have taken the values

from Tables I, II, III, and constructed the curve



for each color which represents absorption as a function of
particle diameter (similar to the radiation curves in

Fig. 12). From this diagram [ then rcad off the absorption
coefficients for the particle diameters listed in the
following tables. The numbers are given in the same units

as the radiated energy above. Thus they signify the light
loss on a 1 mm path through a solution with concentration
107% (1 cbmm gold in 1 liter of water) in units per thousand.

The quantity X is thus found by multiplying by 103.

Absorption of Colloidal Gold Solutions

gy 420 ¢ 450 ¢ 500 524 550 600 1 630

0 10,5 37,4 59.6 69,0 5 16,4 7,0
20 uu 12,3 KER] IR TH 61,6 . 18,5 8,0
{0, 46,5 12,0 6,0 S50 75,1 20 11,3
6o, 18,3 49,4 67,4 884 ML 31,3 0 16,4
80 ,, 465 - 448 2.5 $1.0 970 650 27,1
o0 11.0 41,0 H2,2 683 22 N30 . 44,5
120 ., 34,6 34,8 42,5 51,2 6LU . 11,5 ¢ 38T
140 ,, 994 2% 45,1 419 486 © 5T,0 | 56,1
160 ,. 25,7 . U6l 40,5 36,0 412 | 45,1 . 45,6
180 ,, 24,0 A 23,0 33.0 ¢ oaT0 st 36,5

These numbers are shown graphically in Fig. 25 as the

absorption spectra for various particle sizes.
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Fig. 25. Absorption of colloidal gold solutions

Thus we see for fine distribution the well-known steep
absorption maximum of the ruby red gold solution in the
green at about 525 uppy wave length. If particle size increases,
then for a constant concentration,absorption first increases
in the entire spectrum, color changes a little, gradually
shifts towards the blue,and the maximum is always bent
towards the right. A severe change is first observed
when the particle diameter is about 100 pp. For this

particle size,the solution is violet. At 120 and 140 we
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already see the characteristic spectra of deep blue gold

solutions, at 160 that of an indigo blue, at 180 that of

a greenish blue. Thus in fact we obtain all the colors

observed in colloidal gold solutions as particle size changes.
28, It is already clear that the color of gold solutions

is primarily based on the absorption of light in the gold

particles themselves. They would never be observed with

perfectly conducting particles. Here the light loss would

be entirely due to transverse light scattering alone, and

the absorption curves would therefore be identical with the

radiation curves shown earlier in Fig. 15. (if the next

higher partial wave, thus the coefficients P, of the

corresponding losses were added). These curves appear

quite different, like the absorption curves of gold solutionsj

they would always represent only very flat colors,and for

infinitely fine distribution the absorption would be zero.
For larger particle sizes the light loss through

lateral radiation also determines the color of the gold

solutions. Blue solutions are those that show a strong

red-yellow radiation. It is in any case of interest to

calculate both summands of the absorption coefficient.

For a practical calculation we find from (99) the equations:

K o= €K

K = 'l;,' .:c“.(n,!”+ mEF L., ‘) (101)

24 n?

:"i,‘"-!-.(nlz'i'uﬂg'{’" ’n-lz)‘ J

S -



Up to about 2p = 100 mm, K' is identical with fhe
quantity Fq calculated in §23 (Fig. 14). For larger particle
diameters, coefficients p, and o, are significant, although
Rayleigh radiation continues to predominate up to 180 wuu.

I found the quantities p, and o for coarser particles by
graphical interpoiation from Table II and III, and calculated

XK' for the same particle sizes for which we already know X.
Then

el ] (102)

is the measure for the fraction of the light lost in the
particles themselves. The following table shows the calcu-
lated values of K'', again neglecting a factor of 103

Coefficients of Pure Absorption

2g 1 420 0 450 | 00 52

1 : [ 530 . 600 | 850
p— 3] .—_—}‘ = BT e - .'.:__.:f—_;.'_.’.':l‘._".;.'A‘.:'ﬂ..‘..:‘_."_‘.;:.r_——-._—z"——"‘

0 | 405 ‘ 37,4 | 59,6 | 69,0 | 555 164 | 1,0
2Wpp || 424 | 386 | 61,9 . 76, I 81,0 18,2 ¢ 1,9
40, || #4404 63,3 | 81,9 ‘ i,8 a1 9,9
60, j 426 | 404 | 594 | I 250 10,5
80, , 359 ' 85,6 ' 48,3 | 58,1 | 592 320 | 124
100, 1 21,4 i 287 34,9 39,0 | 393 29,5 | 255
120, & 2,1 | 220 25,2 256 | 24,5 19,7 | 138
140 ,, 5 17,2 18,0 20,1 19,9 3 19,1 1,9 | 98
160, i 14,0 | 148 16,4 16,1 | 152 100 ;i 81
180, ' 14,9 | 129 14,1 I 14,3 | 13,3 88 | 63

These numbers are shown graphically in Fig. 26. These

pure absorptions curves always have their maximum in the
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green between A = 525 and A = 550. If we compare Fig. 26
with Fig. 14, we see no parallel between absorption and
irradiation. Thus for small particles, where irradiation
is still at a maximum in the green-yellow, the irradiation
increases very rapidly with increasing particle size, while
at the same time absorption exhibits a weak decrease.
Then while the irradiation maximum moves towards the right,
the pure absorption maximum also moves a little to the right,
although it remains always in the grcen. But in addition
to these relatively slight variations, we observe another,
which apparently does not depend on the special nature of
gold and which finally predominates over all others: the
larger the particles become, the lower and flatter are
the curves. This is also obvious; for when the particles
are to a certain extent thick, they are finally opaque for
all colors , and the thicker they become, the smaller the
sum of the cross section casting a shadow.

If the bending effect is neglected, thus only geometric
shadows are involved, the absorption coefficient would be

6

ky = N-q, where at a concentration of 107:

10~¢
1

w ¢
3

‘\, =

y g =L 0%,

thus:

I(u == 1\’_{/ == ;

-84-



Fig. 26. '"Pure absorption'" in colloidal gold solutions

]

Then we can calculate for 2p = 180: k 8.3/1000,

0
for 2p = 160: k., = 9.4/1000. I have likewise entered

0
these values of ko in Fig. 25 and 26, naturally, as straight
lines, because ko does not depend on color. We see that
diffraction makes absorption considerably greater. Further-
more in the yellow and red by far the greatest part of the
light is removed by the particles through reflectién, while
in the left half of the spectrum approximately half of the

lost light is absorbed in the particles.

The colors of colloidal gold solutions are explained
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by the interaction of two properties of gold particles. The
gold particles have in faet a very sharp maximum in the
absorption capability in the green, and secondly a maximum
in reflection capability in the yellow-red. Very small
particles reflect weakly and absorb strongly, consequently -
they make the solution ruby red. Large particles reflect
strongly, at the same time the pure absorption curve for
them becomes lower and flatter, so they make the solution
blue. The color of the coarsest solution is alone determined
by the property of the gold to reflect strongly the red-
yellow part of the spectrum, this results in its less satu-
rated blue-green color.

Of course this theorem can only be demonstrated under
the assumption of spherical particles. But even for flake
and rod shaped particles, we must distinguish similarly
between absorption capability and reflection capability of
the particles.

The comparison of the theoretical results found in this
work with the measurement results will be left for Mr.
Steubing. However it should be pointed out here that these
measurements indicate that in fact the known optical
properties of gold are retained for the ultramicroscopic
partiéles and are completely sufficient to explain the

optical properties of the colloidal solution, but on the
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other hand the theory needs to be extended in order to
explain everything, and should probably be developed further.

for ellipsoidal particles (flakes or rods).
Results

1. The problem of calculating the optical properties
of turbid media has been solved under two simplifying
assumptions: first that the particles may’be considered
spherical, second, that the turbidity is infinitely dilute
in the optical sense. The second assumption is certainly
appropriate for the conventional colloidal solutions.

2. The light irradiated by the small particles can be
calculated as a series of "partial waves, " and indeed
there are two groups of partial waves corresponding to the
electrical and magnetic oscillations of>the particles. Only
a finite number of these partial waves needs to be considered
for large particles, and the (v?l)th magnetic oscillation

th electrical osciliation.

is parallel to the v
In colloidal solutions with very fine particles only the

first electrical oscillation, which corresponds to the

"Rayleigh radiation'" is of significance. For coarser

colloidal solutions, the second electrical and the first

magnetic oscillation are of significance.
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3. The assumption that the spheres are perfect....
conductors, which results in improper simplification of the

equations, leads to anpgther result, namely that the vth

th electrical

magnetic oscillation is parallel with the v
oscillation. Accordingly even in the finest turbidities,
the first magnetic oscillation must be noticeable in
addition to the Rayleigh radiation, and this would give the
Thomson theorem of the polarization maximum at 120°. Since
the assumption is false, the result cannot be confirmed
empirically.

4., If an unpolarized light beam is passed through the
turbid solution, the laterally irradiated light is wholly
or partially linearly polarized (never elliptically
polarized).

Up to a particle size of about 100 up, the light
scattered laterally by the gold spheres is almost solely
Rayleigh radiation, which has its polarization maximum (100 %)
at 90°. If the particles become larger, then the contri-
bution of the unpolarized light at 90° increases very
rapidly, and the polarization maximum shifts forward; at
particle sizes 160 and 180 upp, it lies at 110° and 120°.
At the same time the initial symmetry of the Rayleigh radi-
ation is disturbed by interference of the partial. waves

with each other; by far the greatest part of the diffuse
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radiation goes towards the side to which the exciting light
beam is directed. In the latter regard, the light reflected
by imaginary, very small, perfectly conducting spheres

would behave exactly opposite. The large gold spheres,
which exhibit this anomalous polarization behavior, have

a red-yellow diffuse radiation énd color the solution blue.
There can be no red particles that behave in this way.

6. Given a constant concentration, the diffuse
radiation of very fine turbidities is proportional to the
"volume of a particle. In coarser turbidities it increases
with increasing particle size more slowly and finally
reaches a maximum whose position depends on the wave length.
In a turbidity of imaginary, perfectly conducting spheres,
the particle diameter corresponding to maximum radiation is
proportional to the wave length (0.324A'); for gold spheres
there is no law so simple, yet thc particle diameters
concerned are always between X'/4 and A'/3.

The color of the diffusely scattered light, both for the
imaginary, perfectly conducting spheres and for completely
white spheres, provideé they are very small, is blue-violet,
corrcsponding to the Rayleigh law (radiation proportional

to a4

). Coarser spheres would send out an approximately
white light with a weak, dull hue, which depends on the

particle size. An optical resonance, which would vigorously
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generate a given color, is excluded, at least for spherical
particles, and it is not possible to explain the vigorous
coloring of the colloidal solutions by means of resonance.

8. The diffuse radiation of gold particles is in general
much stronger than that of equally large, perfectly conducting
spheres. Furthermore, for the finest distribution, it
exhibits a very sharp maximum in the green-yellow. Later
the radiation maximum increases especially high in the red-
yellow. To speak of resonance, we must first speak of a
resonance of the gold atoms in the yellow, which is super-
imposed on the phenomenon to be expected in colorless
conducting particles.

9. Infinitely fine turbidities involving gold particles
show (in sharpest contrast to what would be expected of
perfectly conducting pérticlcs) a charucteristic absorption
that depends only on the quantity of suspended metal
(concentration) and not on the degree of finess. It would
be interesting to study experimentally the way in which
this may change in the case of minute particles which
contain only a few atoms.

10; Generally ahsorption of colloidal gold solutions
depends on two properfies of the metallic gold: the absorp-
tion capability and reflection capability. Solutions in

which the diffuse reflection opposes absorption show the
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absorption maximum of the gold particles, which liesrin
the green; they are consequently ruby red. Solutions that
show strong diffuse reflection are on the other haﬁd blue-
transparent, because gold reflects mainly the red-yellow
light.

11. To complete the theory it is absolutely necessary

to study the behavior of ellipsoidal particles.

Greifswald, Physikalisches Institut

Original article submitted January 7, 1908
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