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TMATRIX is a Fortran 90 program to compute the scattering and absorption
of electromagnetic waves by particles with arbitrary geometries using the T-
matrix method. The program is intended for science professionals, engineers
and graduate students working in optics, electromagnetics, biomedical optics,
atmospheric radiation and remote sensing. We assume that the reader is familiar
with the fundamentals of classical electromagnetics and optics.

1 Theoretical background
In the T-matrix method, the scattered and internal fields are approximated
by the complete set of localized vector spherical wave functions Mmn (kr) and
Nmn (kr), where n is the expansion order index, n = max (1, |m|) , ..., Nrank, m
is the azimuthal index, m = 0,±1, ...,±Mrank, r is the position vector and k is
the wave number. The truncation indices Nrank and Mrank are the maximum
expansion and azimuthal orders, respectively, and an important part of the code
is the convergence procedure which finds reliable estimates of Nrank and Mrank.
For particles with extremely aspherical surfaces, the use of distributed vector
spherical wave functions (lowest-order multipoles)

Mmn(kr) =Mm,|m|+l [k(r− znez)] , Nmn(kr) = Nm,|m|+l [k(r− znez)] ,

improves the numerical stability of the T-matrix calculations. Here, {zn} is
a dense set of points on the z-axis, ez is the unit vector in the direction of
the z-axis, n = 1, 2, ...Nrank,m = 0,±1, ...,±Mrank, and l = 1 if m = 0 and
l = 0 if m 6= 0. For distributed vector spherical wave functions, Nrank is the
number of discrete sources, and by convention, Nrank will be also referred to
as the maximum expansion order. The vector spherical wave functions are
expressed in terms of spherical and normalized associated Legendre functions,
and we recall that the radiating localized vector spherical wave functions are
singular at the origin (r = 0), while the radiating distributed vector spherical
wave functions are singular at r =znez.
Everywhere outside the (smallest) sphere circumscribing the particle it is ap-
propriate to expand the scattered field in terms of radiating vector spherical
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wave functions

Es (r) =

Mra n kX
m=−Mr a n k

Nr a n kX
n=max(1,|m|)

fmnM
3
mn (ksr) + gmnN

3
mn (ksr) . (1)

and the incident field in terms of regular vector spherical wave functions

Ee (r) =

Mr a n kX
m=−Mr a n k

Nr a n kX
n=max(1,|m|)

amnM
1
mn (ksr) + bmnN

1
mn (ksr) . (2)

Due to the linearity relations of the Maxwell equations and the constitutive
relations, the relation between the scattered and incident field coefficients must
be linear. This relation is given by the so-called transition matrix T as follows:∙

fmn

gmn

¸
= T

∙
amn

bmn

¸
=

∙
T11 T12

T21 T22

¸ ∙
amn

bmn

¸
. (3)

Essentially, the transition matrix depends on the physical and geometrical char-
acteristics of the particle and is independent on the propagation direction and
polarization states of the incident and scattered field. The standard scheme
for computing the T matrix relies on the null-field method. For a homogeneous
particle, the transition matrix relating the expansion coefficients of the scattered
and incident fields is given by

T = −Q11 (ks , ki)
£
Q31 (ks , ki)

¤−1
. (4)

where the expressions of the matrices Q31 and Q11 follow from the extinction
theorem and Huygens principle, respectively. The elements of the matrices Q31

and Q11 are expressed as integrals over the particle surface and the number of
integration points Nint is an additional parameter of the convergence analysis.
In fact, the T-matrix calculation is directly influenced by the three parameters
Nint, Nrank and Mrank.
If the T matrix is known, the scattering characteristics, describing the scattered
field in the far-field region, can be readily computed. These include the far-field
pattern, the differential scattering cross sections, the amplitude matrix, the
optical cross sections and the phase and extinction matrices. We consider a
global coordinate system OXY Z with the origin inside the particle and denote
by αp , βp and γp the particle orientation angles. For an incident wave traveling
in the direction (β,α) we denote by

Es(r) =
ejks r

r

½
Es∞(er) +O

µ
1

r

¶¾
, r →∞,

the scattered field in the direction (θ,ϕ), where Es∞(er) is the far-field pattern,
and er = r/r is the radial unit vector. Using the decomposition

Es∞ = Es∞,θeθ +Es∞,ϕeϕ
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where (er, eθ, eϕ) are the spherical unit vectors of the scattering direction (θ,ϕ),
we define the differential scattering cross sections for parallel and perpendicular
polarizations as σdp = |Es∞,θ|2 and σds = |Es∞,ϕ|2. The differential scattering
cross sections have the dimension of area, and a dimensionless quantity are
the normalized differential scattering cross sections σdpn = |Es∞,θ|2 /πa2c and
σdsn = |Es∞,ϕ|2 /πa2c , where ac is a characteristic dimension of the particle.
The incident vector plane wave can be expressed as

Ee (r) = Ee0ejke ·r, Ee0 · ek = 0, (5)

where ke is the wave vector, ke = ksek, Ee0 is the complex amplitude vector,

Ee0 = Ee0,βeβ +Ee0,αeα,

and Ee0,β and Ee0,α are the complex amplitudes in the β- and α-direction,
respectively. An equivalent representation for Ee0 is

Ee0 = |Ee0 | epol, (6)

where epol is the complex polarization unit vector, |epol| = 1, and

epol =
1

|Ee0 |
(Ee0,βeβ + Ee0,αeα) .

Inserting (6) into (5), gives the representation

Ee (r) = |Ee0 | epolejke ·r, epol · ek = 0,

and obviously, |Ee (r)| = |Ee0 |. For a linearly polarized wave, the polarization
unit vector is real and is given by

epol = cosαpoleβ + sinαpoleα, (7)

where αpol is the polarization angle.
In Figs. 1, 2 and 3 we illustrate the particle orientation angles αp, βp and γp ,
the transformation from the global coordinate system OXY Z to the particle
coordinate system Oxyz, and the incident and scattering direction (β, α) and
(θ, ϕ), respectively.
The amplitude matrix is given by∙

Es∞,θ(er)
Es∞,ϕ(er)

¸
= S (er, ek)

∙
Ee0,β

Ee0,α

¸
, (8)

where Ee0,β and Ee0,α do not depend on the incident direction. Essentially,
the amplitude matrix is a generalization of the scattering amplitudes including
polarization effects. The amplitude matrix provides a complete description of
the far-field patterns and depends on the incident and scattering directions as
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Figure 1: Particle orientation angles and the transformation from the global
coordinate system OXY Z to the particle coordinate system Oxyz through three
rotations.
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Figure 2: Incident direction (β, α) .
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Figure 3: Scattering direction (θ, ϕ) .

well on the size, optical properties and orientation of the particle. Assuming
that the incident vector plane wave is of unit amplitude and setting

S =

∙
Sθβ Sθα
Sϕβ Sϕα

¸
,

we see that for a vector plane wave linearly polarized in the β-direction, Sθβ =
Es∞,θ and Sϕβ = Es∞,ϕ, while for a vector plane wave linearly polarized in the
α-direction, Sθα = Es∞,θ and Sϕα = Es∞,ϕ. In general for a linearly polarized
wave of unit amplitude, we have

Es∞,θ = Sθβ cosαpol + Sθα sinαpol

and
Esϕ = Sϕβ cosαpol + Sϕα sinαpol.

The Stokes vectors Ie and Is describe the polarization characteristics of the
incident and scattered fields, respectively. They are given by

Ie =

⎡⎢⎢⎣
Ie
Qe
Ue
Ve

⎤⎥⎥⎦ and Is (rer) =
1

r2

⎡⎢⎢⎢⎣
Is (er)

Qs (er)

Us (er)

Vs (er)

⎤⎥⎥⎥⎦ ,
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where the first Stokes parameter I, is the intensity of the wave, while the Stokes
parameters Q, U and V describe the polarization state of the wave. The Stokes
parameters are defined with respect to a reference plane containing the direction
of wave propagation, and Q and U depend on the choice of the reference frame.
The phase matrix Z relates the Stokes vectors of the incident and scattered
fields, i.e.,

Is (rer) =
1

r2
Z (er, ek) Ie

and note that the elements of the phase matrix can be expressed in terms of the
elements of the amplitude matrix.
A scattering particle can change the state of polarization of the incident beam
after it passes the particle. This phenomenon is called dichroism and a complete
description of the extinction process requires the introduction of the extinction
matrix K. The extinction matrix K is defined as

I (rek)∆S ≈ Ie∆S −K (ek) Ie ,

where I is the Stokes vector of the total field in the forward-scattering direction
(er = ek) and ∆S is an elementary surface situated in the far-field region. Note
that according to the optical theorem, the elements of the extinction matrix can
be expressed in terms of the forward-scattering amplitude matrix.
The scattering and absorption cross sections Cscat and Cabs represents the elec-
tromagnetic powers removed from the incident wave as a result of scattering
and absorption of the incident radiation, while the extinction cross section Cext
gives the total electromagnetic power removed from the incident wave by the
combined effect of scattering and absorption. The optical cross sections have
the dimension of area and depend on the direction and polarization state of the
incident wave as well on the size, optical properties and particle orientation. For
an incident wave of unit amplitude, the scattering cross section is given by

Cscat =

Z
Ω

|Es∞|2 dΩ,

where the integral is taken over the unit sphere Ω. In practice, the scattering
cross section can be computed as

Cscat =
π

k2s

Mr a n kX
m=−Mr a n k

Nr a n kX
n=max(1,|m|)

|fmn|2 + |gmn|2 (9)

where fmn and gmn are the expansion coefficients of the scattered field. The
scattering efficiency is a dimensionless quantity and is given by

Qscat =
Cscat
G

,

where G is the particle cross-sectional area projected onto a plane perpendicular
to the incident beam. Taking into account the definition of the normalized
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differential scattering cross section, we set G = πa2c , where ac is the area-
equivalent-circle radius. In view of the optical theorem and for an incident wave
of unit amplitude, the extinction cross section can be computed as

Cext =
4π

ks
Im {E∗e0 ·Es∞ (ek)} .

In terms of the expansion coefficients of the incident and scattered field, we have

Cext = −
π

k2s

Mra n kX
m=−Mr a n k

Nr a n kX
n=max(1,|m|)

Re {fmna
∗
mn + gmnb

∗
mn} (10)

where amn and bmn are the expansion coefficients of the incident wave. As
before, the extinction efficiency or the extinction efficiency factor is given by

Qext =
Cext
G

.

The phase function is related to the differential scattering cross section by the
relation

p (er, ek) =
4π

Cscat
|Es∞ (er)|2 ,

whence, taking into account the definition of the scattering cross section, we see
that p is dimensionless and normalized, i.e.,

1

4π

Z
Ω

p dΩ = 1.

The mean direction of propagation of the scattered radiation is defined as

g =
1

Cscat

Z
Ω

|Es∞ (er)|2 er dΩ (er) (11)

and we note the decomposition

g = gβeβ + gαeα + gkek,

where gk = hcosΘi = g · ek is the asymmetry parameter (the dot product
between the vector g and the incident direction ek). The asymmetry parameter
can be expressed as

hcosΘi = g · ek =
1

4π

Z
Ω

p (er, ek) cosΘ dΩ (er) ,

where cosΘ = er · ek, and it is apparent that the asymmetry parameter is
the average cosine of the scattering angle Θ. If the particle scatters more light
toward the forward direction (Θ = 0), hcosΘi is positive and hcosΘi is negative
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if the scattering is directed more toward the backscattering direction (Θ =
180 ◦). If the scattering is symmetric about a scattering angle of 90 ◦, hcosΘi
vanishes.
The scattering medium consisting of an ensemble of randomly oriented, identi-
cal particles is macroscopically isotropic, i.e., the scattering characteristics are
independent of the incident and scattering directions ek and er. For this type
of scattering problem, it is convenient to direct the Z-axis of the global coor-
dinate system along the incident direction and to choose the XZ-plane as the
scattering plane. The phase matrix of a volume element containing randomly
oriented particles can be written as

Z (er, ek) = Z (θ, ϕ = 0, β = 0, α = 0) ,

where, in general, θ and ϕ are the polar angles of the scattering direction er,
and β and α are the polar angles of the incident direction ek. The phase ma-
trix Z (θ, 0, 0, 0) is known as the scattering matrix F and relates the Stokes
parameters of the incident and scattered fields defined with respect to the scat-
tering plane. The phase matrix Z (θ, ϕ, β, α) can then be expressed in terms
of the scattering matrix F (θ) by using the rotation transformation rule for the
incident and scattered fields

Z (θ, ϕ, β, α) = L (−σ2)F (Θ)L (σ1) ,

where

cosΘ = ek · er = cosβ cos θ + sinβ sin θ cos (ϕ− α) ,

cosσ1 = e
0
α · eα = −

sinβ cos θ − cosβ sin θ cos (ϕ− α)

sinΘ
,

cosσ2 = e
0
ϕ · eϕ =

cosβ sin θ − sinβ cos θ cos (ϕ− α)

sinΘ
.

The scattering matrix of a volume element containing randomly oriented parti-
cles has only ten independent elements,

F (θ) =

⎡⎢⎢⎣
F11 (θ) F12 (θ) F13 (θ) F14 (θ)
F12 (θ) F22 (θ) F23 (θ) F24 (θ)
−F13 (θ) −F23 (θ) F33 (θ) F34 (θ)
F14 (θ) F24 (θ) −F34 (θ) F44 (θ)

⎤⎥⎥⎦ . (12)

If each particle has a plane of symmetry, or equivalently, the particles and
their mirror-symmetric particles are present in equal number, the scattering
mediums called macroscopically and mirror-symmetric. The scattering matrix
for macroscopically isotropic and mirror-symmetric media has a block-diagonal
structure, so that only eight elements of the scattering matrix are nonzero and
only six of them are independent,

F (θ) =

⎡⎢⎢⎣
F11 (θ) F12 (θ) 0 0
F12 (θ) F22 (θ) 0 0
0 0 F33 (θ) F34 (θ)
0 0 −F34 (θ) F44 (θ)

⎤⎥⎥⎦ . (13)
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For an ensemble of randomly oriented particles, the waves scattered by different
particles are random in phase, and the Stokes parameters of these incoherent
waves add up. Therefore, the scattering matrix for the ensemble is the sum of
the scattering matrices of the individual particles,

F = N hFi ,

where N is number of particles and hFi denotes the ensemble-average scattering
matrix per particle. Similar relations hold for the extinction matrix and optical
cross sections. Because the particles are identical, the ensemble-average of a
scattering quantity X is the orientation-averaged quantity

hXi =
2πZ
0

2πZ
0

πZ
0

X
¡
αp , βp , γp

¢
p
¡
αp , βp , γp

¢
sinβp dβpdαpdγp ,

where αp, βp and γp are the particle orientation angles and p is the probability
density function satisfying the normalization condition,

2πZ
0

2πZ
0

πZ
0

p
¡
αp , βp , γp

¢
sinβp dβpdαpdγp = 1.

Random particle orientation means that the orientation distribution of the par-
ticle is uniform. For a complete uniform orientation distribution function, the
Euler angles αp , βp and γp are uniformly distributed in the intervals (0, 360

◦),
(0, 180 ◦) and (0, 360 ◦), respectively and

p
¡
αp , βp , γp

¢
=

1

8π2
.

For an ensemble of randomly oriented particles illuminated by a vector plane
wave of unit amplitude and polarization vector epol = epol,βeβ + epol,αeα, the
average differential scattering cross sections in the scattering plane ϕ are given
by

hσdp (θ)i =
D
|Es∞,θ (θ)|2

E
=
D
|Sθβ (θ)|2

E ¯̄
E0e0,β

¯̄2
+
D
|Sθα (θ)|2

E ¯̄
E0e0,α

¯̄2
+2Re

©
hSθβ (θ)S∗θα (θ)iE0e0,βE0∗e0,α

ª
, (14)

and

hσds (θ)i =
D
|Es∞,ϕ (θ)|2

E
=
D
|Sϕβ (θ)|2

E ¯̄
E0e0,β

¯̄2
+
D
|Sϕα (θ)|2

E ¯̄
E0e0,α

¯̄2
+2Re

©
Sϕβ (θ)S

∗
ϕα (θ)

®
E0e0,βE

0∗
e0,α

ª
, (15)
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where

E0e0,β = epol,β cosϕ+ epol,α sinϕ,

E0e0,α = − epol,β sinϕ+ epol,α cosϕ.

It should be noted that for macroscopically isotropic and mirror-symmetric me-
dia,

hSθβ (θ)S∗θα (θ)i = 0,
Sϕβ (θ)S

∗
ϕα (θ)

®
= 0,

and the expressions of hσdp (θ)i and hσds (θ)i simplify considerably.
The non-zero elements of the average extinction matrix are given by

hKiii = −
2π

k2s
Re

(X
n

(2n+ 1)
¡
t11n + t22n

¢)
, i = 1, 2, 3, 4, (16)

and

hK14i = hK41i =
2π

k2s
Re

(X
n

(2n+ 1)
¡
t12n + t21n

¢)
,

hK23i = − hK32i =
2π

k2s
Im

(X
n

(2n+ 1)
¡
t12n + t21n

¢)
.

(17)

where the coefficients tijn are expressed in terms of the T-matrix elements

tijn =
1

2n+ 1

X
m0

T ij
m0n,m0n.

For macroscopically isotropic and mirror-symmetric media, the identities t12n =
t21n = 0, imply

hK14i = hK41i = hK23i = hK32i = 0.
In this specific case, the orientation-averaged extinction matrix becomes diag-
onal with diagonal elements being equal to the orientation-averaged extinction
cross section per particle, hKi = hCexti I.
The average optical cross sections are given by

hCscati =
1

Ie
(hCscatiI Ie + hCscatiV Ve) ,

and
hCexti =

1

Ie
(hCextiI Ie + hCextiV Ve) ,
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where as before, (Ie , Qe , Ue , Ve) are the Stokes parameters of the incident wave,

hCscatiI =
2π

k2s

X
n

(2n+ 1)
¡et11n + et22n ¢ , (18)

hCextiI = hK11i , (19)

hCscatiV = 2π

πZ
0

hF14 (θ)i sin θ dθ, (20)

hCextiV = hK14i , (21)

and

et11n =
1

2n+ 1

X
m0,n1,m1

¯̄
T 11m1n1,m0n

¯̄2
+
¯̄
T 21m1n1,m0n

¯̄2
,

et22n =
1

2n+ 1

X
m0,n1,m1

¯̄
T 12m1n1,m0n

¯̄2
+
¯̄
T 22m1n1,m0n

¯̄2
.

For macroscopically isotropic and mirror-symmetric media, hCscatiV = 0 and
hCextiV = 0, and the optical cross sections are independent of the direction and
polarization of the incident wave.
For the asymmetry parameter, we have similar relations, i.e.,

hcosΘi = hCscatiI
hCscati

1

Ie
(hcosΘiI Ie + hcosΘiV Ve) ,

where

hcosΘiI =
2π

hCscatiI

πZ
0

hF11 (θ)i sin θ cos θ dθ, (22)

and

hcosΘiV =
2π

hCscatiI

πZ
0

hF14 (θ)i sin θ cos θ dθ. (23)

Note that for macroscopically isotropic and mirror-symmetric media, hcosΘiV =
0.
It should be mentioned that for an ensemble of randomly oriented particles
(not necessarily a macroscopically isotropic and mirror-symmetric medium),
illuminated by linearly polarized vector plane wave, we also have hCscati =
hCscatiI , hCexti = hCextiI and hcosΘi = hcosΘiI .

2 Program structure
The package contains the following directories:

• TMATSOURCES,
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• INPUTFILES,

• GEOMFILES,

• OUTPUTFILES, and

• TMATFILES.

The executable program must be created in the directory TMATFILES and
must includes the main program “TMATRIX.f90” and all F90 routines con-
tained in this directory. To compile the code on a Unix system use the Makefile
supplied in the directory TMATFILES, but edit the Makefile to provide the de-
sired compiler option. To compile the code on a PC (using for instance, Compaq
Visual Fortran or Microsoft Developer Studio) create a project in the directory
TMATFILES and add all F90 files to the project.

2.1 Directory TMATSOURCES

The main program “TMATRIX.f90” calls a T-matrix routine for solving a spe-
cific scattering problem. These routines compute the T matrix of

• homogeneous, dielectric (isotropic, chiral) and perfectly conducting, ax-
isymmetric particles (“TAXSYM.f90”),

• homogeneous, dielectric (isotropic, uniaxial anisotropic, chiral) and per-
fectly conducting, nonaxisymmetric particles (“TNONAXSYM.f90”),

• axisymmetric, composite particles (“TCOMP.f90”),

• axisymmetric, layered particles (“TLAY.f90”),

• an inhomogeneous, dielectric, axisymmetric particle with an arbitrarily
shaped inclusion (“TINHOM.f90”),

• an inhomogeneous, dielectric sphere with a spherical inclusion (“TIN-
HOM2SPH.f90”),

• an inhomogeneous, dielectric sphere with an arbitrarily shaped inclusion
(“TINHOMSPH.f90”),

• an inhomogeneous, dielectric sphere with multiple spherical inclusions
(“TINHOMSPHREC.f90”),

• clusters of arbitrarily shaped particles (“TMULT.f90”),

• two homogeneous, dielectric spheres (“TMULT2SPH.f90”),

• clusters of homogeneous, dielectric spheres (“TMULTSPH.f90” and “TMULT-
SPHREC.f90”),

• concentrically layered spheres (“TSPHERE.f90”) and
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• a homogeneous, dielectric or perfectly conducting, axisymmetric particle
on or near a plane surface (“TPARTSUB.f90”).

The code

• performs convergence tests and write the results to the output file “/OUT-
PUTFILES/Output.dat”,

• computes and stores the T matrix in the file “/TMATFILES/FileTmat”,
and

• compute the scattering characteristics and write the results to the files
“/OUTPUTFILES/FileDSCS” and “/OUTPUTFILES/FileScat”.

Three other routines are called by the main program:

• “SCT.f90” computes the scattering characteristics of a particle using the
previously calculated T matrix,

• “SCTAVRGSPH.f90” computes the scattering characteristics of an ensem-
ble of polydisperse, homogeneous spherical particles, and

• “EFMED.f90” computes the effective wave number of a medium with ran-
domly distributed spheroidal particles.

Detailed descriptions of the routines invoked by the main program are given in
the comment lines included at the top of each routine.
Specific T-matrix calculations are performed by several routines which are in-
cluded in the following files:

• “AdditionTh.f90” provides routines for computing the translation addition
coefficients, the rotation functions and the coupling coefficients,

• “BesLeg.f90” contains routines for computing the spherical Bessel and
Hankel functions, the cylindrical Bessel functions and the associated Legen-
dre functions,

• “Check.f90” provides routines for checking the input data,

• “GeomLib.f90” is a library of particle geometries,

• “GeomTrans.f90” provides routines for geometric transformations,

• “IncCoeff.f90” contains routines for computing the incident field coeffi-
cients for a vector plane wave and a Gaussian beam,

• “InputOutput.f90” supplies routines for reading and writing the data,

• “Integr.f90” provides numerical integration routines,

• “Interp.f90” supplies interpolation routines,
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• “MachParam.f90” contains routines for computing the machine constants,

• “MatrixOp.f90” provides routines for performing elementary matrix oper-
ations,

• “MatrixQ.f90” contains routines for computing the (partial) Q matrices
and the incident matrices at a specific integration point,

• “MatrixSolv.f90” supplies routines for solving linear algebraic equations,

• “MatrixTrans.f90” provides matrix transformation routines,

• “Parameter.f90” defines the constant parameters of the codes,

• “PostProces1.f90” and “PostProces2.f90” provide routines for computing
the scattering characteristics for a particle in a fixed or a random orien-
tation,

• “PostProces3.f90” provides analytical size averaging routines for spherical
particles,

• “Proces1.f90” supplies routines for computing the complete Q matrices
and the incident matrices for axisymmetric and nonaxisymmetric particles,

• “Proces2.f90” supplies routines for computing the complete Q matrices
and the incident matrices for composite and layered particles,

• “Proces3.f90” supplies routines for computing the scattered field coeffi-
cients for spheres and the complete Q matrices for uniaxial anisotropic
particles and particles on or near a plane surface, and

• “SVWF.f90” provides routines for computing the localized and distributed
vector spherical wave functions.

The programs are written in a modular form, so that modifications, if required,
should be fairly straightforward. In this context, the routines contained in the
files:

• “BesLeg.f90”,

• “GeomLib.f90”,

• “Integr.f90”,

• “Interp.f90”,

• “MachParam.f90”,

• “MatrixOp.f90”,

• “MatrixSolv.f90”, and

14



• “SVWF.f90”

can be replaced by more efficient routines.
The code performs calculations with double- or extended-precision floating point
variables. The precision control parameter O is defined in the file “Para-
meters.f90”. For double-precision calculation, set O = kind(1.d0), while for
extended-precision calculation, use the statement O = kind(1.q0). The extended-
precision codes are slower than the double-precision codes by a factor of 5-6,
but allow computations for larger particles. It should also be mentioned that
the CPU time consumption rapidly increases with increasing the particle size
and asphericity.
T-matrix calculations involve matrix inversions which can be performed with
the LU-factorization. For large matrices, the stabilized version of Bi-Conjugate-
Gradients with preconditioning can be used. In general, matrix inversion is an
ill-conditioned process and the round-off errors become significant with increas-
ing the particle size and/or aspect ratio. As a result, T-matrix computations
can become divergent. Efficient ways of dealing with this numerical instabil-
ity is to use extended precision or distributed vector spherical wave functions.
Distributed sources can be used for axisymmetric particles and are preferable
for highly aspherical particles. For highly elongated particles, the sources are
distributed along the axis of symmetry of the particle, while for highly flattened
particles, the sources are distributed in the complex plane. Error messages are
printed to the screen and messages appear explaining the cause of termination.
However, we are convinced that we were not able to imagine all con-
flicting situations. Therefore, we recommend to analyze carefully the
significance of the input parameters.

2.2 Directory INPUTFILES

Input to the program is by means of user supplied input files. In fact, the input
parameters are divided between several groups each specified by a keyword that
is recognized by the program. Once a keyword has been read, the program
expects certain parameters to follow. The following points should be noted:

• Each parameter is specified on a single line and free format input is used
throughout.

• Comments are included at the end of each group.

• Character input must be enclosed by quotes.

• When file names are supplied, they should not be greater than 80 charac-
ters long.

The general structure of a group of variables is:
< keyword of the group of variables >
< value of variable 1 >
...
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< value of variable n >

Variables:
< name and short description of variable 1 >
...
< name and short description of variable n >

Note that the lines after the line < value of variable n > are comments. For ex-
ample, the group of variables MatProp, contained in the input file “InputAXSYM.dat”,
read as

MatProp
.false.
.false.
0.1
Variables:
- perfectcond - if perfectcond = t, the particle is perfectly conducting.
- chiral - if chiral = t, the particle is optical active (chiral).
- kb - parameter of chirality.

In general, the required input parameters are specified in three input files:

• the file “/INPUTFILES/InputXXX.dat” provides the variables specify-
ing the optical properties, geometry, type of discrete sources and error
tolerances,

• the file “/INPUTFILES/InputSCT.dat” provides the variables specifying
the scattering characteristics calculation, and

• the file “/INPUTFILES/Input.dat” specifies the model control parame-
ters.

Here XXX stands for AXSYM, NONAXSYM, COMP, LAY, INHOM, INHOM2SPH,
INHOMSPH, INHOMSPHREC, MULT, MULT2SPH, MULTSPH, MULTSPHREC,
SPHERE, PARTSUB, EFMED and SCTAVRGSPH.

2.2.1 “InputXXX.dat”

Exhaustive descriptions of the parameters required by the input files “InputXXX.dat”
are given in the comment lines of each T-matrix routine.

2.2.2 “InputSCT.dat”

The scattering characteristics depend on the type of the orientation distribution
function. By convention, the uniform distribution function is called complete
if the Euler angles αp, βp and γp are uniformly distributed in the intervals
(0, 360 ◦), (0, 180 ◦) and (0, 360 ◦), respectively. The normalization constant is
4π for axisymmetric particles and 8π2 for nonaxisymmetric particles. The uni-
form distribution function is called incomplete if the Euler angles αp , βp and
γp are uniformly distributed in the intervals (αpmin, αpmax),

¡
βpmin, βpmax

¢
,
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and
¡
γpmin, γpmax

¢
, respectively. For axisymmetric particles, the orientational

average is performed over αp and βp, and the normalization constant is

(αpmax − αpmin)
¡
cosβpmin − cosβpmax

¢
,

while for nonaxisymmetric particles, the orientational average is performed over
αp , βp and γp , and the normalization constant is

(αpmax − αpmin)
¡
cosβpmin − cosβpmax

¢ ¡
γpmax − γpmin

¢
.

The scattering characteristics computed by the code are summarized below.

Complete uniform distribution function
For the complete uniform distribution function, the external excitation is a
vector plane wave propagating along the Z-axis of the global coordinate system
and the scattering plane is the XZ-plane. The code computes the following
orientation-averaged quantities:

• the scattering matrix hFi at a set of Nθ,RND scattering angles,

• the extinction matrix hKi,

• the scattering and extinction cross sections hCscati and hCexti, and

• the asymmetry parameter hcosΘi .

The scattering angles, at which the scattering matrix is evaluated, are uniformly
spaced in the interval (θmin ,RND , θmax ,RND). The elements of the scattering
matrix are expressed in terms of the ten average quantitiesD

|Sθβ|2
E
,
D
|Sθα|2

E
,
D
|Sϕβ|2

E
,
D
|Sϕα|2

E
,

SθβS

∗
ϕα

®
,

SθαS
∗
ϕβ

®
, hSθβS∗θαi ,


SθβS

∗
ϕβ

®
,

SθαS

∗
ϕα

®
,

SϕβS

∗
ϕα

®
,

for macroscopically isotropic media, and the six average quantitiesD
|Sθβ |2

E
,
D
|Sθα|2

E
,
D
|Sϕβ|2

E
,
D
|Sϕα|2

E
,

SθβS

∗
ϕα

®
,

SθαS

∗
ϕβ

®
,

for macroscopically isotropic and mirror-symmetric media.

SpqS

∗
p1q1

®
are com-

puted at Nθ,GS scattering angles, which are uniformly spaced in the interval
(0, 180 ◦). The scattering matrix is calculated at the same sample angles and
polynomial interpolation is used to evaluate the scattering matrix at any polar
angle θ in the range (θmin ,RND , θmax ,RND ). The average quantities


SpqS

∗
p1q1

®
can be computed by using a numerical procedure or the analytical orientation-
averaging approach. The numerical orientation-averaging procedure chooses the
angles αp, βp and γp to sample the intervals (0, 360

◦), (0, 180 ◦) and (0, 360 ◦),
respectively. The prescription for choosing the angles is to

• uniformly sample in αp ,
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• uniformly sample in cosβp or nonuniformly sample in βp , and

• uniformly sample in γp .

The integration over αp and γp are performed with Simpson’s rule, and the
number of integration points Nα and Nγ must be odd numbers. The integration
over βp can also be performed with Simpson’s rule, and in this specific case,
the algorithm samples uniformly in cosβp, and the number of integration points
Nβ is an odd number. Alternatively, Gauss-Legendre quadrature method can be
used for averaging over βp , andNβ can be any integer number. For the analytical
orientation-averaging approach, the maximum expansion and azimuthal orders
Nrank and Mrank (specifying the dimensions of the T matrix) can be reduced.
In this case, a convergence test over the extinction and scattering cross sections
gives the effective values N eff

rank and M eff
rank .

The orientation-averaged extinction matrix hKi is computed by using (16) and
(17), and note that for macroscopically isotropic and mirror-symmetric media
the off-diagonal elements are zero and the diagonal elements are equal to the
orientation-averaged extinction cross section per particle.
For macroscopically isotropic and mirror-symmetric media, the orientation-
averaged scattering and extinction cross sections hCscati = hCscatiI and hCexti =
hCextiI are calculated by using (18) and (19), respectively, while for macroscop-
ically isotropic media, the code additionally computes hCscatiV accordingly to
(20), and hCextiV as hCextiV = hK14i.
The asymmetry parameter hcosΘi is determined by angular integration over the
scattering angle θ. The number of integration points is Nθ,GS and Simpson’s
rule is used for calculation. For macroscopically isotropic and mirror-symmetric
media, the asymmetry parameter hcosΘi = hcosΘiI is calculated by using (22),
while for macroscopically isotropic media, the code supplementarily computes
hcosΘiV accordingly to (23).
The physical correctness of the computed results is tested by using the inequal-
ities

hF11i ≥ |hFiji| , i, j = 1, 2, 3, 4,
(hF11i+ hF22i)2 − 4 hF12i2 ≥ (hF33i+ hF44i)2 + 4 hF34i2 ,
hF11i− hF22i ≥ |hF33i− hF44i| ,
hF11i− hF12i ≥ |hF22i− hF12i| ,
hF11i+ hF12i ≥ |hF22i+ hF12i| ,

(24)

given by Hovenier and van der Mee. The message that the test is not satisfied
means that the computed results may be wrong.
The code also computes the average differential scattering cross sections hσdpi
and hσdsi for a specific incident polarization state and at a set of Nθ,GS scatter-
ing angles (cf. (14) and (15)). These scattering angles are uniformly spaced in
the interval (0, 180 ◦) and coincide with the sample angles at which the average
quantities


SpqS

∗
p1q1

®
are computed. The polarization state of the incident vec-

tor plane wave is specified by the complex amplitudes Ee0,β and Ee0,α, and the
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differential scattering cross sections are calculated for the complex polarization
unit vector

epol =
1q

|Ee0,β|2 + |Ee0,α|2
(Ee0,βeβ +Ee0,αeα) . (25)

Note that Nθ,GS is the number of scattering angles at which

SpqS

∗
p1q1

®
, hσdpi

and hσdsi are computed, and also gives the number of integration points for
calculating hCscatiV, hcosΘiI and hcosΘiV. Because the integrals are computed
with Simpson’s rule, Nθ,GS must be an odd number.

Incomplete uniform distribution function
For the incomplete uniform distribution function, we use a global coordinate
system to specify both the direction of propagation and the states of polarization
of the incident and scattered waves, and the particle orientation. A special
orientation with a constant orientation angle can be specified by setting Nδ = 1
and δmin = δmax, where δ stands for αp , βp and γp . For example, uniform
particle orientation distributions around the Z-axis can be specified by setting
Nβ = 1 and βpmin = βpmax.
The scattering characteristics are averaged over the particle orientation by using
a numerical procedure. The prescriptions for choosing the sample angles and
the significance of the parameters are as above. For each particle orientation we
compute the following quantities:

• the phase matrix Z at Nϕ scattering planes,

• the extinction matrix K for a plane wave incidence,

• the scattering and extinction cross sections Cscat and Cext for incident
parallel and perpendicular linear polarizations, and

• the mean direction of propagation of the scattered field g for incident
parallel and perpendicular linear polarizations.

The azimuthal angles describing the positions of the scattering planes at which
the phase matrix is computed are ϕ(1), ϕ(2),..., ϕ (Nϕ). In each scattering
plane i, i = 1, 2, ..., Nϕ, the number of zenith angles is Nθ(i), while the zenith
angle varies between θmin(i) and θmax (i). For each particle orientation, the
phase and extinction matrices Z and K are computed, while the scattering and
extinction cross sections Cscat and Cext are calculated accordingly to (9) and
(10), respectively.
The mean direction of propagation of the scattered field g is evaluated by angu-
lar integration over the scattering angles θ and ϕ (cf. (11)), and the numbers of
integration points are Nθ,asym and Nϕ,asym . The integration over ϕ is performed
with Simpson’s rule, while the integration over θ can be performed with Simp-
son’s rule or Gauss-Legendre quadrature method. We note that the optical cross
sections and the mean direction of propagation of the scattered field are com-
puted for linearly polarized incident waves (vector plane waves and Gaussian
beams) by choosing αpol = 0 ◦ and αpol = 90

◦ (cf. (7)).
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Figure 4: Geometry of a Gaussian beam.

The code also calculates the average differential scattering cross sections σdp
and σds in the azimuthal plane ϕGS and at a set of Nθ,GS scattering angles.
The average differential scattering cross sections can be computed for scattering
angles ranging from 0 ◦ to 180 ◦ in the azimuthal plane ϕGS and from 180

◦ to 0 ◦

in the azimuthal plane ϕGS + 180
◦, or for scattering angles ranging from 0 ◦ to

180 ◦ in the azimuthal plane ϕGS. The calculations are performed for elliptically
polarized vector plane waves (characterized by the complex polarization unit
vector epol as in (25)) and linearly polarized Gaussian beams (characterized by
the polarization angle αpol). The geometry for a Gaussian beam excitation is
shown Fig. 4.
For spherical particles, the code chooses a single orientation αpmin = αpmax =
0 ◦, βpmin = βpmax = 0

◦ and γpmin = γpmax = 0
◦, and sets Mrank = Nrank .

The input parameters specified in the file “InputSCT.dat” are listed below.

• wavelength (real) - wavelength in the surrounding medium.

• FileTmat (character(80)) - name of the file containing the T matrix.

• Mrank, Nrank (integers) - are the variables Mrank and Nrank and repre-
sent the number of azimuthal modes and the maximum expansion order,
respectively. These parameters give the dimensions of the T matrix.

• axsym (logical) - if axsym = t, the scatterer is a rotationally symmetric
particle (axisymmetric particle).
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particle axsym sphere chiral
axisymmetric and chiral t f t

axisymmetric and nonchiral t f f
sphere (always nonchiral) t t f
nonaxisymmetric and chiral f f t

nonaxisymmetric and nonchiral f f f

Table 1: Values of the logical variables axsym, sphere and chiral.

• sphere (logical) - if sphere = t, the scatterer is a spherical particle. Note
that for a spherical particle we must set: sphere = .true. and axsym =
.true.

• chiral (logical) - if chiral = t, the scatterer is an optical active particle
(chiral particle). The possible values of the logical variables axsym, sphere
and chiral are as in Table 1.

The above parameters must be specified if the main program calls the
routine ”SCT.f90”, i.e., if we compute the scattering characteristics
of a particle using the previously calculated T matrix. Otherwise
these parameters are ignored.

• RandonOrientation (logical) - if RandomOrientation = t, the uniform dis-
tribution function is complete and the particle is randomly oriented with
respect to the global coordinate system. The Euler orientation angles αp ,
βp and γp are uniformly distributed in the intervals (0

◦, 360◦), (0◦, 180◦)
and (0◦, 360◦), respectively. If RandomOrientation = f, the uniform dis-
tribution function is incomplete and the Euler orientation angles are uni-
formly distributed in the intervals (αpmin, αpmax),

¡
βpmin, βpmax

¢
, and¡

γpmin, γpmax
¢
, respectively.

The following input parameters must be specified for a complete uni-
form distribution function, i.e., for RandomOrientation = .true.

• MirorSym (logical) - if MirorSym = t, the scattering medium is isotropic
and mirror-symetric.

• DoNumAvrg (logical) - if DoNumAvrg = t, the average quantities

SpqS

∗
p1q1

®
are computed by using a numerical orientation-averaging procedure. Oth-
erwise, an analytical orientation-averaging procedure is employed.

• NthetaGS (integer) - is the variable Nθ,GS and gives the number of scatter-
ing angle at which the average quantities


SpqS

∗
p1q1

®
are computed. The

scattering angles are uniformly spaced and Nθ,GS must be an odd num-
ber. The scattering matrix and the differential scattering cross section are
also computed at Nθ,GS scattering angles, while the asymmetry parameter
is calculated with Simpson’s rule by integrating hF11 (θ)i over the Nθ,GS

scattering angles.
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• ReducedOrder (logical) - if ReducedOrder = t, the analytical orientation-
averaging procedure (DoNumAvrg = f) computes the average quantities
SpqS

∗
p1q1

®
for reduced values of Nrank and Mrank . The effective values

N eff
rank and M eff

rank are computed by analyzing the convergence of the ex-
tinction and scattering cross sections.

• deltaOrder (real) - error tolerance for the convergence test over the extinc-
tion and scattering cross sections. This parameter is used for computing
N eff
rank and M eff

rank .

• UseSimpson (logical) - if UseSimpson = t, the integration over the orienta-
tion angle βp is transformed into an integration over cosβp and the Simp-
son rule is used for numerical integration (uniformly sample in cosβp).
If UseSimpson = f,the integration is performed with the Gauss-Legendre
quadrature method.

• Nalpha, Nbeta, Ngamma (integers) - are the variablesNα, Nβ andNγ , and
give the numbers of division points for averaging the quantities


SpqS

∗
p1q1

®
over the Euler orientation angles αp , βp and γp (when DoNumAvrg = t).
The integration over αp and γp are performed with Simpson’s rule and
Nα and Nγ must be odd numbers. If the numerical integration over βp
is performed with Simpson’s rule (UseSimpson = t), Nβ must be also an
odd number.

• anorm (real) - is the variable ac and specifies the characteristic length of
the particle which is used to normalize the average differential scattering
cross sections and the optical cross sections.

• ComputeDSCS (logical) - if ComputeDSCS = t, the average differential
scattering cross sections are computed in the azimuthal plane ϕGS and for
the complex polarization unit vector epol. The complex polarization unit
vector epol is computed from the complex amplitudes Ee0,β and Ee0,α. If
ComputeDSCS = f, this calculation is not performed.

• EI_betaGI (complex) - is the variable Ee0,β and represents the parallel
component of the complex amplitude vector (in the β-direction) for a plane
wave incidence.

• EI_alphaGI (complex) - is the variable Ee0,α and represents the perpen-
dicular component of the complex amplitude vector (in the α-direction)
for a plane wave incidence.

• phiGS (real) - is the variable ϕGS and specifies the scattering plane in
which the average differential scattering cross sections are computed.

• normalized (logical) - if normalized = t, the average differential scattering
cross sections are normalized by πa2c , where ac is the characteristic length
of the particle.
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• FileDSCS (character(80)) - name of the file to which the average differen-
tial scattering cross sections are written.

• ComputeScatPar (logical) - if ComputeScatPar = t, the extinction and
scattering cross sections, the asymmetry parameter, and the extinction
and scattering matrix are computed.

• NthetaRND (integer) - is the variable Nθ,RND and gives the number of
zenith angle values in the interval (θmin ,RND , θmax ,RND) at which the scat-
tering matrix is computed. The zenith angles are uniformly spaced.

• thetaminRND, thetamaxRND (reals) - are the variables θmin ,RND and
θmax ,RND, and specify the minimal and maximal values of the zenith angle
θ at which the scattering matrix is computed.

• FileSCAT (character(80)) - name of the file to which the scattering char-
acteristics are written.

• Nelem (integer) - number of scattering matrix elements to be printed out
in the output file FileSCAT.

• MatrixElem (integer array) - set of matrix elements to be printed. The
permissive values are: 11, 12, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 34, 41,
42, 43, 44. The default set of elements is: 11, 21, 31, 41, 12, 13 and Nelem
= 6.

The following input parameters must be specified for an incomplete
uniform distribution function, i.e., for RandomOrientation = .false.

• UseSimpson (logical) - if UseSimpson = t, the integration over the orienta-
tion angle βp is transformed into an integration over βp and the Simpson
rule is used for numerical integration (uniformly sample in cosβp). Fur-
thermore, if UseSimpson = t, the integration over the scattering angle θ
for computing the asymmetry parameter and the mean direction of propa-
gation of the scattered radiation is also performed with Simpson’s rule. If
UseSimpson = f, the integrations are performed with the Gauss-Legendre
quadrature method.

• alphamin, alphamax, betamin, betamax, gammamin, gammamax (reals)
- are the variables αpmin, αpmax, βpmin, βpmax, γpmin and γpmax, and
specify the minimal and maximal values of the Euler orientation angles
αp , βp and γp .

• Nalpha, Nbeta, Ngamma (integers) - are the variables Nα, Nβ and Nγ ,
and give the numbers of division points for averaging the scattering charac-
teristics over the Euler orientation angles αp , βp and γp . The integration
over αpand γp are performed with Simpson’s rule and Nα and Nγ must
be odd numbers. If the numerical integration over βp is performed with
Simpson’s rule (UseSimpson = t), Nβ must be also an odd number.
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• anorm (real) - is the variable ac and represents the characteristic length of
the particle which is used to normalize the average differential scattering
cross sections and the optical cross sections.

• TypeExcit (character(5)) - specifies the type of the external excitation.
TypeExcit = ‘PLANE’, for a plane wave excitation, and TypeExcit =
‘GAUSS’ for a Gaussian beam excitation.

• betaGI, alphaGI (reals) - are the variables β and α, and specify the angular
coordinates of the incident direction in the global coordinate system.

• x0, y0, z0 (reals) - are the variables x0, y0 and z0, and represent the
Cartesian coordinates of the middle of the Gaussian beam waist.

• w0 (real) - is the variable w0 and represents the waist radius of the
Gaussian beam.

• ComputeDSCS (logical) - if ComputeDSCS = t, the average differential
scattering cross sections are computed in the azimuthal plane ϕGS. For
a plane wave incidence, the calculation is performed for the complex po-
larization unit vector epol. The complex polarization unit vector epol is
computed from the complex amplitudes Ee0,β and Ee0,α. In the case of
a Gaussian beam illumination, the calculation is performed for a linearly
polarized wave. The state of polarization of the Gaussian beam is de-
scribed by the polarization angle αpol,gauss. If ComputeDSCS = f, this
calculation is not performed.

• EI_betaGI (complex) - is the variable Ee0,β and specify the parallel com-
ponent of the complex amplitude vector (in the β-direction) for a plane
wave incidence.

• EI_alphaGI (complex) - is the variable Ee0,α and specify the perpendic-
ular component of the complex amplitude vector (in the α-direction) for
a plane wave incidence.

• alphapGauss (real) - is the variable αpol,gauss and represents the polar-
ization angle of the Gaussian beam. If (ek, eβ , eα) are the spherical unit
vectors of the incident direction (β, α), then αpol,gauss is the angle between
the electric field vector and the unit vector eβ .

• phiGS (real) - is the variable ϕGS and specifies the scattering plane in
which the average differential scattering cross sections are computed.

• NthetaGS (integer) - is the variable Nθ,GS and gives the number of scat-
tering angle at which the average differential scattering cross sections are
computed. The scattering angles are uniformly spaced.

• ExtThetaDom (logical) - if ExtThetaDom = t the DSCS are computed for
scattering angles ranging from 0◦ to 180◦ in the azimuthal plane ϕGS, and
from 180◦ to 0◦ in the azimuthal plane ϕGS + 180

◦. The total number of
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scattering angles is Nθ,GS. If ExtThetaDom = f the DSCS are computed
for scattering angles ranging from 0◦ to 180◦ in the azimuthal plane ϕGS.

• normalized (logical) - if normalized = t, the average differential scattering
cross sections are normalized by πa2c , where ac is the characteristic length
of the particle.

• FileDSCS (character(80)) - name of the file to which the average differen-
tial scattering cross sections are written.

• ComputeScatPar (logical) - if ComputeScatPar = t, the scattering char-
acteristics are computed at specified scattering directions. The following
average quantities are computed: the extinction and scattering cross sec-
tions for incident parallel and perpendicular linear polarizations, the mean
direction of propagation of the scattered radiation for incident parallel and
perpendicular linear polarizations, and the phase and extinction matrices.
Note that the extinction matrix is computed only for a plane wave excita-
tion.The azimuthal angles describing the positions of the scattering planes
at which the phase matrix is computed are ϕ(1),..., ϕ (Nϕ). In each scat-
tering plane i, i = 1, ..., Nϕ, the number of zenith angles is Nθ(i), while
the zenith angle varies between θmin(i) and θmax (i).

• Nphi (integer) - is the variable Nϕ and gives the number of scattering
planes at which the phase matrix is computed.

• phi (real array) - is the array ϕ(1),..., ϕ (Nϕ) of all azimuthal angles spec-
ifying the scattering planes at which the phase matrix is computed.

• Ntheta (integer array) - is the array Nθ(1),..., Nθ (Nϕ), and gives the
number of zenith angle values in each scattering plane at which the phase
matrix is computed.

• thetamin, thetamax (real arrays) - are the arrays θmin(1), ...,θmin(Nϕ)
and θmax(1), ...,θmax(Nϕ), and specify the minimal and maximal values
of the zenith angle in each scattering plane at which the phase matrix is
computed.

• FileSCAT (character(80)) - name of the file to which the scattering char-
acteristics are written.

• Nelem (integer) - number of phase matrix elements to be printed out in
the output file FileSCAT.

• MatrixElem (integer array) - set of matrix elements to be printed. The
permissive values are: 11, 12, 13, 14, 15, 21, 22, 23, 24, 31, 32, 33, 34, 41,
42, 43, 44. The default set of elements is: 11, 21, 31, 41, 12, 13 and Nelem
= 6.

• ComputeAsymPar (logical) - if ComputeAsymPar = t, the mean direction
of propagation of the scattered wave is computed.

25



• NthetaAsym, NphiAsym (integers) - are the variablesNθ,asym andNϕ,asym ,
and give the numbers of integration points for computing the the mean
direction of propagation of the scattered radiation. If the integration over
θ is performed with Simpson’s rule (UseSimpson = t), Nθ,asym must be an
odd number.

• PrnProgress (logical) - if PrnProgress = t, the progress of calculation is
printed.

• WriteInputInfo (logical) - if WriteInputInfo = t, the input parameters
of the scattering problem are written to the output files FileDSCS and
FileSCAT.

Note that all input parameters specifying lengths must be provided in the same
units of lengths.
The process of computing the scattering characteristics is shown by the following
logical scheme.

if ( RandomOrientation ) then
TypeExcit = ‘PLANE’, β = α = 0 (the incident wave is an arbitrarily
polarized vector plane wave propagating along the Z-axis of the
global coordinate system)
< read the integer variable Nθ,GS from the input file “Input.SCT.dat”>
if ( .not. DoNumAvrg ) then

< read the logical variable ReducedOrder from the file
“InputSCT.dat” >
< compute


SpqS

∗
p1q1

®
at Nθ,GS discrete angles,

and hCextiI and hCscatiI by using the analytical
integration procedure; if ReducedOrder = t, the effective
values N eff

rank and M eff
rank are computed by using a

convergence test over the extinction and scattering cross
sections >

else
ReducedOrder = .false.
< read the variables UseSimpson, Nα, Nβ and Nγ

from the file “InputSCT.dat” >
< compute


SpqS

∗
p1q1

®
at Nθ,GS discrete angles,

and hCextiI and hCscatiI by using the numerical
integration procedure; if UseSimpson = t, the integration over
β is performed with Simpson’s rule >

end if
if ( ComputeDSCS ) then

< read the variables ϕGS, Ee0,β and Ee0,α from
the file “InputSCT.dat” >
< compute the complex polarization unit vector epol >
if ( .not. MirorSym ) < compute hCextiV and hCscatiV;
the number of integration points for computing hCscatiV is
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Nθ,GS and the Simpson rule is used for calculation >

< for an elliptically polarized vector plane wave, characterized
by the complex polarization unit vector epol , compute
hσdpi and hσdsi at Nθ,GS scattering angles in the azimuthal
plane ϕGS >

< write hσdpi and hσdsi together with hCextiI , hCscatiI,
hCextiV and hCscatiV to the file FileDSCS; note that
hCextiI, hCscatiI, hCextiV and hCscatiV do not depend on
the polarization state of the incident vector plane wave>

end if
if ( ComputeScatPar) then

< read the variables Nθ,RND, θmin ,RND and θmax ,RND
from the file “InputSCT.dat” >
< compute the average extinction matrix for macroscopically
isotropic media; if the scattering medium is mirror symmetric,
the extinction matrix is a diagonal matrix >
< compute the average asymmetry parameter hcosΘiI,
and for macroscopically isotropic media, additionally compute
hcosΘiV; the number of integration points for computing
the asymmetry parameters is Nθ,GS and the Simpson rule is
used for calculation >

if ( .not. MirorSym ) < compute hCextiV and hCscatiV;
the number of integration points for computing hCscatiV is
Nθ,GS and the Simpson rule is used for calculation >

< compute the scattering matrix at Nθ,RND scattering angles

(uniformly spaced in the interval
¡
θmin ,RND, θmax ,RND

¢
),

and write the results together with the average extinction matrix,
asymmetry parameter and optical cross sections to the file
FileSCAT; note that these quantities are independent on the
polarization state of the incident vector plane wave >

end if
else

< read the logical variable UseSimpson (specifying the type of
integration method for the orientational average procedure) from
the file “InputSCT.dat” >
< read the minimal and the maximal values of the Euler orientation
angles: αpmin, αpmax, βpmin, βpmax, γpmin and γpmax,
and the number of integration points Nα, Nβ and Nγ >

< read the variables TypeExcit (‘PLANE’ or ‘GAUSS’), β
and α from the file “InputSCT.dat”; note that the incident field
is a linearly polarized Gaussian beam or a vector plane wave
propagating in the direction (β,α) >
if ( ComputeDSCS ) then

< read the variables ϕGS, Nθ,GS, Ee0,β , Ee0,α
and αpol,gauss from the file “InputSCT.dat” >
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< for a plane wave incidence, compute the complex polarization
unit vector epol >
hCexti = 0, hCscati = 0, hσdpi = 0, hσdsi = 0
for < each particle orientation

¡
αp , βp , γp

¢
> do

< for an elliptically polarized vector plane wave, characterized
by the complex polarization unit vector epol , or for a linearly
polarized Gaussian beam, characterized by the polarization
angle αpol,gauss , compute the cross sections Cext and
Cscat , and σdp and σds at Nθ,GS scattering angles
in the azimuthal plane ϕGS >

hCexti = hCexti+ Cext/Nconfig

hCscati = hCscati+ Cscat/Nconfig

hσdpi = hσdpi+ σdp/Nconfig , hσdsi = hσdsi+ σds/Nconfig

end for
< write the average quantities to the file FileDSCS >

end if
if ( ComputeScatPar) then

< read the variables ComputeAsymPar, Nθ,asym and Nϕ,asym

from the file “InputSCT.dat” >
< read the variables Nϕ and ϕ (i), Nθ (i), θmin (i)
and θmax (i) for i = 1, ..., Nϕ, from the file “InputSCT.dat” >
hCext,pi = 0, hCext,si = 0, hCscat,pi = 0, hCscat,si = 0
hgpi = 0, hgsi = 0, hZi = 0, hKi = 0
for < each particle orientation

¡
αp , βp , γp

¢
> do

< assume linearly polarized incident waves (vector plane waves
or Gaussian beams) and compute the cross sections Cext,p ,
Cext,s , Cscat,p and Cscat,s for incident parallel and
perpendicular linear polarizations, that is for αpol = 0◦ and
αpol = 90

◦ >
if ( ComputeAsymPar ) then

< assume linearly polarized incident waves (vector plane
waves or Gaussian beams) and compute the mean
direction of propagation of the scattered radiation gp and
gs for incident parallel and perpendicular linear
polarizations, that is for αpol = 0◦ and αpol = 90◦;
the number of integration points for computing gp and
gs are Nθ,asym and Nϕ,asym , and Simpson’s rule
is used for the integration over ϕ, while, according to
the value of the logical variable UseSimpon, the Simpson
rule or the Gauss-Legendrequadrature method is used
for the integration over θ >

end if
< for a plane wave incidence, compute the extinction matrix K >

< compute the phase matrix Z at Nϕ scattering planes >
hCext,pi = hCext,pi+ Cext,p/Nconfig

hCext,si = hCext,si+ Cext,s/Nconfig
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hCscat,pi = hCscat,pi+ Cscat,p/Nconfig

hCscat,si = hCscat,si+ Cscat,s/Nconfig

if ( ComputeAsymPar ) then
hgpi = hgpi+ gp/Nconfig

hgsi = hgsi+ gs/Nconfig

end if
hZi = hZi+ Z/Nconfig , hKi = hKi+K/Nconfig

end for
< write the average quantities to the file FileSCAT >

end if
end if

2.2.3 “Input.dat”

The model control parameters specified in the input file “Input.dat” are listed
below.

• TypeMatrSolv (character array) - specifies the method for solving linear
algebraic equations. The permissive values are: ‘LU1’ - LU decomposition
method from Numerical Recipes, ‘LU2’ - LU decomposition method from
Lapack library, ‘LU3’ - LU decomposition method from Lapack library
with solution improvement, and ‘BICG’ - Bi-Conjugate-Gradients method.
The recommended value is ‘LU2’.

• itmax (integer) - maximum number of iteration for the ‘LU3’ method or
‘BICG’ method. The recommended value of this parameter is 100.

• TypePrecond (character array) - specifies the type of preconditioning for
the ‘BICG’ method. The permissive values are: ‘NEUMANN’ - incom-
plete Neumann series, ‘SILU’ - incomplete LU factorization, ‘ ’ - diagonal
elements of the matrix. The recommended value is ‘ ’.

• NPrecOrder (integer) - truncation order of the Neumann series. This
parameter is used if TypePrecond = ‘NEUMANN’. The recommended
value is 6.

• epsilon (real) - solution tolerance for the ‘BICG’ method. The recom-
mended value is 1.e-6.

• TypeInterp (character array) - specifies the type of interpolation method
for scattering matrix calculation. The scattering matrix is computed at
a set of sample angles and polynomial interpolation is used to evaluate
the scattering matrix at any zenith angle. The permissive values are:
‘LINEAR’, ‘SPLINE’ and ‘HERMITE’. The recommended value of this
parameter is ‘LINEAR’.

• TypeIntegr (character array) - specifies the source of the numerical inte-
gration routines Gauss-Legendre, Laguerre, Simpson and trapez method.
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The permissive values are: ‘MET1’ - routines from Numerical Recipes,
‘MET2’ - modified routines from Slatec library. The recommended value
is ‘MET1’.

• epsGauss (real) - tolerance for computing the roots of the Legendre poly-
noms. The accuracy of the T-matrix calculation strongly depends on eps-
Gauss. The value of this parameter should be set as small as possible.
For double precision arithmetic, epsGauss = 1.e-15,...,1.e-12.

• epsLaguerre (real) - tolerance for computing the roots of the Laguerre
polynomials. The routine “TPARTSUB.f90” computes the scattering char-
acteristics of a particle on or near a plane surface. In this case, the integrals
appearing in the expression of the reflection matrix are calculated by us-
ing the Laguerre quadrature method. The recommended value for double
precision arthmetic is 1.e-10.

• TypeRND (character array) - specifies the type of the random number gen-
erator. The routines “TMULTSPHREC.f90” and “TINHOMSPHREC.f90”
compute the scattering characteristics of a cluster of spherical particles and
of an inhomogeneous sphere with multiple spherical inclusions. In both
cases, the spherical particles are randomly distributed and random distrib-
utions of particles are simulated by using random number generators. The
permissive values are: ‘SLAT’ - modified routine from SLATEC library,
‘LPCK’ - modified routine from LAPACK library and ‘ZIGG’ - Ziggurat
method of Marsaglia and Tsang. The recommended value is ‘SLAT’.

2.3 Directory GEOMFILES

The routines “TAXSYM.f90” and “TNONAXSYM.f90” can read the particle
geometry information from the file FileFEM. The name of the file FileFEM is
specified in the input files “InputAXSYM.dat” and “InputNONAXSYM.dat”,
while the file FileFEM is contained in the directory GEOMFILES (as provided).
More informations concerning the structure of file FileFEM are given in the
comment lines of the routines “TAXSYM.f90” and “TNONAXSYM.f90”.

2.4 Directories OUTPUTFILES and TMATFILES

As mentioned before, the code produces several ASCII files:

• the file “/OUTPUTFILES/Output.dat” contains the results of the con-
vergence analysis,

• the file FileTmat in the directory TMATFILE contains the transition ma-
trix,

• the file InfoFileTmat in the directory TMATFILE contains the values of
the maximum expansion and azimuthal orders (which serve as INPUT
PARAMETERS for other programs),
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• the files FileDSCS and FileScat in the directory OUTPUTFILES contain
the differential scattering cross section and the scattering characteristics.

The name of the file FileTmat is supplied by the input file “InputXXX.dat”,
while the name of the files FileDSCS and FileScat are specified in the input
file “InputSCT.dat”. The values provided by the information file InfoFileTmat
must be specified in the input files of all programs which read the T matrix from
file (“TINHOM.f90”, “TINHOMSPH.f90”, “TMULT.f90” and “SCT.f90”). The
name of the information file InfoFileTmat is not explicitely provided. The codes
produce an information file with the name

name of InfoFileTmat = “Info”//name of FileTmat,

i.e., for FileTmat = “TmatSph.dat”, the information file is InfoFileTmat =
“InfoTmatSph.dat”.

3 Flow Diagrams
In Fig. 5 we show the flow diagram of the routines “TAXSYM.f90” and “TNON-
AXSYM.f90”. The flow diagram of the routines “TCOMP.f90”, “TLAY.f90”,
“TINHOM2SPH.f90”, “TINHOMSPHREC.f90”, “TMULT2SPH.f90”, “TMULT-
SPH.f90” and “TMULTSPHREC.f90” are as in Fig. 5 without the block C,
which provide a discretization of the particle geometry. In Table 2 we indicate
the changes with respect to Fig. 5 for the routines “TXXX.f90”, “TPART-
SUB.f90” and “TSPHERE.f90”, where “TXXX.f90” stands for “TINHOM.f90”,
“TINHOMSPH.f90” and “TMULT.f90”. Finally, the changes with respect to
Fig. 5 for the routines “SCT.f90”, “SCTAVRGSPH.f90” and “EFMED.f90” are
given in Table 3.
Let us summarize the steps for computing the electromagnetic scattering with
the TMATRIX program. For this purpose we consider an axisymmetric particle.
The user must

• specify the optical properties, geometry, type of discrete sources and error
tolerances in the input file “/INPUTFILES/InputAXSYM.dat”,

• provide the variables specifying the scattering characteritics calculation in
the input file “/INPUTFILES/InputSCT.dat”;

• set the model control parameters in the input file “/INPUTFILES/Input.dat”;

• run the main program “TMATRIX.f90” by calling the routine “TAXSYM.f90”;

• perfom convergence test and analyse the results written to the file “/OUT-
PUTFILES/Output.dat”; if convergence is achieved the program will write
the T matrix to the file FileTmat in the directory TMATFILES, and the
differential scattering cross sections and the scattering characteristics to
the files FileDSCS and FileScat in the directory OUTPUTFILES;
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Model control parameters 
supplied in the file Input.dat 

from the directory 
INPUTFILES

Particle geometry 
provided by the 

file FileFEM from 
the  directory 
GEOMFILES

- Tmatrix is 
stored in the file 
FileTmat from 
the directory 
TMATFILES,

- InfoFileTmat is 
created  

Scattering 
characteristics are 
stored in the files 

FileDSCS and 
FileScat from the 

directory 
OUTPUTFILES

Convergence 
test results are 
stored in the file 
Output.dat from 

the directory 
OUTPUTFILES

Input data provided by the 
files InputXXX.dat and 
InputSCT.dat from the 
directory INPUTFILES

Working 
routines

Main program 
TXXX.f90

A B

C D

E F G

Figure 5: Flow diagrams of the routines “TAXSYM.f90” and “TNON-
AXSYM.f90”.
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Block TXXX.f90 TPARTSUB.f90 TSPHERE.f90

A as in F ig u r e 5

In p u t d a t a p r ov id e d

by th e fi l e

In p u tPA RT SU B .d a t

f rom th e d ir e c t o r y

IN PU T F IL E S

a s in F ig u r e 5

C

T m a t r ix o f t h e

in c lu s io n / p a r t ic le

p r ov id e d b y th e

fi l e F i l eT m a t f r om th e

d i r e c t o r y T M AT F IL E S

n o t u s e d n o t u s e d

E a s in F ig u r e 5 n o t u s e d

T ve c t o r i s s t o r e d

in th e fi l e F i l eT m a t

f r om th e d ir e c to r y

T M AT F ILE S

F as in F ig u r e 5

S c a t t e r in g ch a r a c t e r i s t ic s

a r e s t o r e d in th e fi l e s

F i leD SC S a n d F i le E FM

fo rm th e d ir e c t o r y

O U T PU T F IL E S

a s in F ig u r e 5

Table 2: Peculiarities of the flow diagrams of the routines "TXXX.f90",
"TPARTSUB.f90" and "TSPHERE.f90".

Block SCT.f90 SCTAVRGSPH.f90 EFMED.f90

A

Inp u t d a t a

p r ov id ed by th e

fi l e In p u tSC T .d a t

f r om th e d ir e c t o r y

IN PU T F IL E S

In p u t d a t a p r ov id e d

by th e fi l e

In p u tS C ATAVRG SPH .d a t

f r om th e d ir e c t o r y

IN PU T F IL E S

In p u t d a t a p r ov id ed

b y th e fi l e

In p u tE FM ED .d a t

f r om th e d i r e c t o r y

IN P U T F IL E S

C

T m a t r ix o f t h e

p a r t ic le p r ov id e d

b y th e fi l e F i leT m a t

f r om th e d ir e c t o r y

T M AT F IL E S

n o t u s e d n o t u s e d

E no t u s e d n o t u s e d n o t u s e d

F a s in F ig u r e 5 a s in F ig u r e 5

R e s u l t s a r e

s t o r e d in th e fi l e

O u tp u t .d a t

fo rm th e d i r e c t o r y

O U T PUT F IL E S

G no t u s ed n o t u s e d n o t u s e d

Table 3: Peculiarities of the flow diagrams of the routines "SCT.f90",
"SCATAVRGSPH.f90" and "EFMED.f90".
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• for new scattering characteristics calculation, modify the input file “/IN-
PUTFILES/InputSCT.dat” and run the main program “TMATRIX.f90”
by calling the routine “SCT.f90”.

For computing the scattering characteristics of inhomogeneous particles with
nonspherical inclusions (routines “TINHOM.f90” and “TINHOMSPH.f90”) and
of clusters of particles (routine “TMULT.f90”), the user must first compute the
individual (free-field) T matrix of the inclusion (embeded in a medium with the
same refractive index as the host particle) and of each particle in the cluster.

4 Note
We would like to point out that there are two main drawbacks of the present
software package:

• The code is time consuming as compared to other T-matrix programs.
Our intention was to cover a large class of electromagnetic problems and
therefore we sacrifice the speed in favour of the flexibility and code modu-
larization. The code shares several modules which are of general use and
are not devoted to a specific application.

• The code is not user-friendly because no automatic built-in convergence
criteria are used. In fact we believe that the user can understand the capa-
bilities and limitations of the method by performing his own convergence
tests.

34


