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Abstract

Light scattering by non-axisymetric particles is commonly needed in particle char-

acterization and other …elds. After much work has been devoted to volume discreti-

sation methods to compute scattering by such particles there is renewed interest in

the T-matrix method. We extended the null-…eld method with discrete sources for

T-matrix computation and implemented the superellipsoid shape using an implicit

equation. Additionally a triangular surface patch model of a realistically shaped

particle can be used for scattering computations. In this paper some examplary

results of scattering by non-axisymmetric particles will be presented.
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1 Introduction

In optical particle characterization, light scattering computations are commonly needed. They help

to design new instruments or to investigate the in‡uence of various particle characteristics, such

as shape, refractive index, composition or surface roughness on a speci…c optical particle sizing

instrument. Various other parameters of the instrument can also be easily investigated using light

scattering simulations. For instance, the e¤ect of the wavelength of the incident laser beam, the

e¤ect of particle trajectory through a measurement volume or the in‡uence of the Gaussian intensity

distribution of a laser beam can be computed.

There is continuous interest in particle shape characterization. This would help to tell apart e.g.

nonspherical particles from spherical ones or …brous particles from other particles. To develop new

instruments for particle shape recognition, of course light scattering theories and corresponding

computer programs for nonspherical particles are needed. The di¤erent methods available in this

…eld have recently been reviewed by Wriedt [1] and Jones [2]. For this introduction, the various
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theories can be divided into volume based ones and surface based theories. Well known volume dis-

cretisation methods are the various integral equation methods such as discrete dipole approximation

(DDA) [3] and volume integral equation method (VIEM) [4] and the di¤erential equation method

…nite di¤erence time domain method (FDTD) [5], [6]. Because the whole volume of a scatterer is

discretised, computer time is rather high.

Nevertheless, this methods have been applied to compute scattering by nonspherical particles in

optical particle sizing and in other …elds. Scattering by cubical crystal has been done using DDA

[3] and scattering by ice crystal has been investigated using FDTD [5].

Since only the surface of a scattering body is discretised, computer demand should be lower with

surface based methods but these methods are not yet that much applied for scattering computation

by arbitrarily shaped particles.

The T-matrix method (also called null …eld method or extended boundary condition method) is

the best known of these methods because fast computer codes are easily available [7], [8], but it is

mainly applied to scattering by axisymmetric scatterers. The T-matrix method has originally been

developed by Waterman in a series of papers [9], [10], [11]. The T-matrix is based on expansion of

all …elds - the incident, transmitted and the scattered …eld - into a series of spherical vector wave

functions.

A crucial advantage of the null-…eld method consists in the fact that the transition matrix or the T-

matrix relating the scattered and the incident …eld coe¢cients can be computed in an easy manner.

The T-matrix only depends on the incident wave length and particle shape, its refractive index and

its relation to the coordinate system. Thus knowing a T-matrix scattering by a rotated particle, a

system of particles, a particle on a plane surface, in incident Gaussian laser beam and orientation

averaged scattering can easily be computed.

Taking into account the general properties of the T-matrix Mishchenko has elaborated an e¢-

cient analytical method for computing orientationally-averaged light scattering characteristics for

ensembles of nonspherical particles [12]. On the other hand, the T-matrix for a single scatterer

can successfully be used for solving a large class of boundary-value problems in electromagnetic

scattering theory. In this context, we mention the analysis of multiple scattering problems [13],[14]

simulation of light scattering by layered or composite objects [15], [16], [17] and by particles de-

posited upon a surface [18].

However, for particles with extreme geometries or particles with appreciable concavities the single

spherical coordinate based null-…eld method fails to converge. A number of modi…cations to the
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conventional null-…eld method have been suggested to improve the numerical stability. These tech-

niques include formal modi…cations of the single-spherical-coordinate-based null-…eld method [19],

[20], [21], di¤erent choices of basis functions [22], [23] and the application of the spheroidal coor-

dinate formalism [24], [25]. One of these formal modi…cations is the null-…eld method with discrete

sources [26], [27], [28]. Essentially, this method entails the use of a number of elementary sources for

approximating the surface current densities. The discrete sources are placed on a certain support

in an additional region with respect to the region where the solution is required. Unknown discrete

sources amplitudes which produce the surface densities are computed by using the null-…eld condi-

tion of the total electric …eld inside the particle surface. With this method, scattering computation

by highly elongated or ‡at scatterers such as …bres and plates [29] and layered particles [30] are

easily possible and the standard T-matrix can also be computed [31] for postprocessing such as

cluster scattering or orientation averaging.

Some brief comments on the history of T-matrix method for non-axisymmetric particles may be of

interest. Early scattering computation for non-axisymmetric scatterers using the T-matrix method

have been done by P. W. Barber in his PhD Thesis [32] and by Schneider [33], both presenting

results for ellipsoids.

The null …eld method with discrete sources has also been extended for scattering computation by

non-axisymmetric scatterers [34] and the method has been fully tested by comparison to other

methods [35] giving results for cubes.

A 3D variant of the T-matrix method has also been developed by Laitinen et al [36] and by Kahnert

et al. [37] both presenting scattering results for rounded cubes and another one by Havemann et

al. [38] giving results for hexagonal icecrystals.

To describe the scattering body using smooth functions Laitinen et al [36] expand the surface of the

scattering cube into a series of spherical harmonics. The problem with this method is that arti…cial

roughness is introduced with this method in addition to rounding of the edges of the cube.

In optical particle characterization, mainly scattering computation by some basic particle shapes

have been investigated such as spheres, spheroids, ellipsoids, cubes and …nite cylinders. Because

there is a lack of tools to describe particle shape in the following the superellipsoid is proposed

to generate various interesting particle shapes and it is integrated into the null …eld method with

discrete sources.

The concept of the paper is arranged as follows. First the superellipsoid particle shape will be

described; next the null …eld method with discrete sources will shortly be introduced and …nally
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some examples of computational results will be presented.

2 Superellipsoid

The superellipsoid represents a family of 3-dimensional shapes by a product of two superquadratic

curves [40]. This shape is well known in computer graphics and it can be used to model a wide range

of shapes such as spheres, ellipsoids and cylinders and especially cubes and cylinders with rounded

edges [39]. The superellipsoid is implemented in various computer programs used in computer

graphics such as POV-Ray, so that a visualization of its form is easily available. The superellipsoid

or superquadratic ellipsoid might be considered a generalization of the ellipsoid, and its implicit

form is given by the following equation

[(x=a)2=e +(y=b)2=e]e=n +(z=c)2=n ¡ 1 = 0 : (1)

We are using the same nomenclature as in POV-Ray.

n is the north-south roundedness and e is the east-west roundedness and the bounds in x;y;z are

given by the parameters a; b; c:

The parametric form of the equation may also be useful in the construction of an object. The

parametric equation of the superellipsoid is given by

x = a cosn(#) cose(')

y = bcosn(#) sine(')

z = c sinn(#)

# : [¡¼=2;¼=2];' : [¡¼; ¼] :

(2)

If n and e are not equal to 1 the angles #;' o¤ cause no longer correspond to the coordinates of the

spherical coordinate system. A problem would arise in the equation if cos(t) or sin(t) was negative.

In this case a negative number could have a fractional exponent, which is an illegal operation.

Therefore the interpretation, that (t)p has the same sign as t and the same magnitude as jtjp is

adopted by using the following operator.

(t)p = sign(t) jtjp : (3)
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e;n 0 0:2 0:5 0:7 1:0 2:0

V 8abc 7:675abc 6:482abc 5:538abc 4:189abc 1:333abc

Table 1: Volume of some exemplary superellipsoids

To produce only convex shapes the values for n and e would be bounded: 0 < fn; eg < 2. To

prevent numerical over‡ow and di¢culties with singularities it is advisable to use a further bound:

0:1 < fn;eg < 1:9. The variety of particle shapes, which can be modelled using the superellipsoid

equation, is plotted in Fig. 1.

The variables n and e are varied between 0.2 and 2.0, whereas the bounds a; b; c are kept constant.

One can see that a variety of shapes from sphere, rounded cube, circular or rectangular cylinder,

octahedra up to even some star shaped objects can be generated.

The volume of a superellipsoid can be computed from [40]:

V = 2 a b c n e B(
n

2
; n) B(

e

2
;
e

2
) : (4)

The term B(x; y) is the beta function which is related to the gamma function:

B(x;y) = 2

¼=2Z

0

sin2x¡1Á cos2y¡1 Á dÁ =
¡(x) ¡(y)

¡(x + y)
: (5)

The volume of some exemplary superellipsoids is given in table Tab. 1:

For the examplary computation in the following section the rounded cube shapes dipicted in Fig. 2

will be used. The parameters n and e are 0.2; 0.5; 0.7 such that cubes with a di¤erent roundedness

result.

3 Null-…eld Method with Discrete Sources

In this section we would like to outline the basics of the null-…eld method with discrete sources [28].

Let us consider a three-dimensional space D consisting of the union of a closed surface S; its interior

Di and its exterior Ds: We denote by kt the wave number in the domain Dt; where kt = k
p

"t¹t;

k = !=c and t = s; i.

The transmission boundary-value problem can be formulated as follows. Let E0; H0 be an entire

solution to the Maxwell equations representing an incident electromagnetic …eld. Find the vector
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…elds, Es; Hs 2 C1(Ds) \ C(Ds) and Ei; Hi 2 C1(Di) \ C(Di) satisfying the Maxwell’s equations

r £Et = jk¹tHt;

r £Ht = ¡jk"tEt;

(6)

in Dt; where t = s; i; and two boundary conditions:

n£ Ei¡ n £Es = n £E0;

n£ Hi¡ n £Hs = n£ H0;

(7)

on S: In addition, the scattered …eld Es; Hs must satisfy the Silver-Müller radiation condition

uniformly for all directions x=x: It is known that the transmission boundary-value problem posseses

an unique solution [41].

For solving the transmission boundary-value problem in the framework of the null-…eld method

with discrete sources the scattering object is replaced by a set of surface current densities e and h,

so that in the exterior domain the sources and …elds are exactly the same as those existing in the

original scattering problem. The entire analysis can conveniently be broken down into the following

three steps:

(I) A set of integral equations for the surface current densities e and h is derived for a variety

of discrete sources. Physically, the set of integral equations in question guarantees the null-…eld

condition within Di. It is noted that localized and distributed vector spherical functions, magnetic

and electric dipoles or vector Mie-potentials can be used as discrete sources. Essentially, the null-

…eld method with discrete sources consists in the projection relations:
Z

S

�
(e ¡ e0) ¢ ª3º + j

r
¹s
"s

(h¡ h0) ¢ ©3º

¸
dS = 0

Z

S

�
(e ¡ e0) ¢ ©3º + j

r
¹s
"s

(h¡ h0) ¢ ª3º
¸

dS = 0; º = 1;2; ::

(8)

where e0 = n £E0 and h0 = n£ H0 are the tangential components of the incident electric and

magnetic …elds. The set
©
ª3º ; ©

3
º

ª
º=1;2;::

consists of radiating solutions to Maxwell equations and

depends on the system of discrete sources which is used for imposing the null-…eld condition.

Actually, this set together with the set of regular solutions to Maxwell equations
©
ª1º ; ©

1
º

ª
º=1;2;::

stands for
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- localized vector spherical functions
n
M1;3
mn; N

1;3
mn

o
m2Z;ņ max(1;jmj)

,

M1;3
mn(kx) =

p
Dmnzn(kr)

"
jm

P jmj
n (cosµ)

sinµ
eµ ¡ dP jmjn (cosµ)

dµ
e'

#
ejm' ;

N1;3
mn(kx) =

p
Dmn

½
n(n + 1)

zn(kr)

kr
P
jmj
n (cosµ) ejm'er

+
[krzn(kr)]0

kr

"
dP

jmj
n (cosµ)

dµ
eµ + jm

P
jmj
n (cos µ)

sin µ
e'

#)
ejm' ;

(9)

where
¡
er;eµ; e'

¢
are the unit vectors in spherical coordinates, zn designates the spherical Bessel

functions jn or the spherical Hankel functions of the …rst kind h1n, P
jmj
n denotes the associated

Legendre polynomial of order n and m; and Dmn is a normalization constant given by

Dmn =
2n +1

4n(n + 1)
¢ (n ¡jmj)!
(n + jmj)! ; (10)

- distributed vector spherical functions
n

M1;3
mn;N1;3

mn

o
m2Z;n=1;2;::

:

M1;3
mn(kx) = M1;3

m;jmj+l (k(x¡zne3)) ; x 2 R3¡ fzne3g1n=1 ;

N1;3
mn(kx) = N1;3

m;jmj+l (k(x¡zne3)) ; x 2 R3 ¡fzne3g1n=1 ;
(11)

where m 2 Z, n = 1; 2; ::, l = 1 if m = 0 and l = 0 if m 6= 0; and fzng1n=1 is a set of points located

on a segment ¡z of the z-axis;

- magnetic and electric dipoles
n

M1;3
ni ;N1;3

ni

o
n=1;2;::;i=1;2

:

M1;3
ni (kx) = m(x§n ; x; ¿§ni); x 2 R3 ¡fx§n g1n=1 ;

N1;3
ni (kx) = n(x§n ; x; ¿§ni); x 2 R3 ¡fx§n g1n=1 ;

(12)

where n = 1; 2; ::; i = 1;2, ¿n1 and ¿n2 are two tangential linear independent unit vectors at the

point xn;

m(x;y;a) =
1

k2
a(x)£ryg(x; y;k); n(x;y;a) =

1

k
ry £ m(x; y;a); x 6= y; (13)

and the sequence fx¡ng1n=1 is dense on a smooth surface S¡ enclosed in Di; while the sequence

fx+n g1n=1 is dense on a smooth surface S+ enclosing Di; or …nally for the set of
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- vector Mie-potentials
n

M1;3
n ; N1;3

n

o
n=1;2;::

:

M1;3
n (kx) =

1

k
r £ ('§n (x)x) ; x 2 R3 ¡fx§n g1n=1 ;

N1;3
n (kx) =

1

k
r £M1;3

n (kx); x 2 R3 ¡fx§n g1n=1 ;
(14)

where the Green functions

'§n (x) =g(x§n ; x;k); n = 1; 2; ::

have singularities fx¡ng1n=1and fx+n g1n=1 distributed on the auxiliary surfaces S¡ and S+; respec-

tively. By convention, when we refer to the null-…eld equations (8) we implicitly refer to all equivalent

forms of these equations.

(II) The surface current densities are approximated by …elds of discrete sources. In this context let

e and h solve the null-…eld equations (8) and assume that the system
©
n£ ª1¹; n£ ©1¹

ª1
¹=1

form

a Schauder basis in L2tan(S): Then there exists a sequence fa¹; b¹g1¹=1 such that

e(y) =
1X

¹=1

a¹n £ª1
¹ (kiy)+b¹n £©1¹ (kiy) ; y 2S ;

h(y) = ¡j

r
"i
¹i

1X

¹=1

a¹n £©1¹ (kiy)+b¹n£ ª1¹ (kiy) ; y 2S :

(15)

We recall that a system fÃig1i=1 is called a Schauder basis of a Banach space X if any element

u 2 X can be uniquely represented as u =
P1
i=1®iÃi; where the convergence of the series is in

the norm of X: It is noted that in the case of localized vector spherical functions the notion of

Schauder basis is closely connected with the Rayleigh hypothesis. This hypothesis says that the

series representation of the scattered …eld in terms of radiating localized vector spherical functions,

which uniformly converges outside the circumscribing sphere, also converges on S:

(III) Once the surface current densities are determined the scattered …eld outside the circumscribing

sphere is obtained by using the representation theorem. We get the series representation

Es(x) =
1X

º=1

fºM
3
º(ksx)+gºN

3
º(ksx) ; (16)
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where

fº =
jk2s
¼

Z

S

�
e(y) ¢ N1

º(ksy)+j

r
¹s
"s

h(y) ¢ M1
º(ksy)

¸
dS(y) ;

gº =
jk2s
¼

Z

S

�
e(y) ¢ M1

º(ksy)+j

r
¹s
"s

h(y) ¢ N1
º(ksy)

¸
dS(y) :

(17)

Here, º is a complex index incorporating ¡m and n, i.e. º = (¡m;n):

3.1 T-matrix Computation

Now, for deriving the T-matrix let us assume that the incident …eld can be expressed inside a …nite

region containing S as a series of regular vector spherical functions

E0(x) =

1X

º=1

a0ºM
1
º(ksx)+b0ºN

1
º(ksx) ;

H0(x) = ¡j

r
"s
¹s

1X

º=1

a0ºN
1
º(ksx)+b0ºM

1
º(ksx) :

(18)

Then, using (8)-(18) we see that the relation between the scattered and the incident …eld coe¢cients

is linear and is given by a transition matrix T as follows
2
4 fº

gº

3
5 = T

2
4 a0º

b0º

3
5 : (19)

Here

T = BA¡1A0 ; (20)

where A; B and A0 are block matrices written in general as

X =

2
4 X11

º¹ X12
º¹

X21
º¹ X22

º¹

3
5 ; º;¹ = 1;2; ::; (21)

with X standing for A;B and A0: Explicit expressions for the elements of these matrices are given

in appendix A.

It is noted that the exact in…nite T-matrix is independent of the expansion systems used on S.

However, the approximate truncated matrix, computed according to

TN = BNA¡1
N A0N (22)
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does contain such a dependence.

Energy characteristics in the far …eld are computed from the far-…eld pattern ENs0 for an unit

amplitude incident electric …eld for p- or s-polarization. The angle-dependent intensity function

plotted in the simulation section is the normalized di¤erential scattering cross-section (DSCS)

¾d
¼a2

=

¯̄
ksENs0

¯̄2

¼ jksaj2 : (23)

To numerically compute orientation averaged scattering three integrals with respect to the three

Euler ®;¯; ° angles have to be computed. Thus the value of interest f(®; ¯;°) is integrated over all

directions and polarization of the incident plane wave. The numerical procedure used to do this is

based an a step wise procedure

2¼Z

0

¼Z

0

2¼Z

0

f(®;¯; °)d®sin ¯d¯d° ¼
N®X

n®=1

NX̄

n¯=1

N°X

n°=1

f(®; ¯;°) sin(n¯¼=N¯)
n®2¼n¯¼n°2¼

N®N¯N°
: (24)

The triple integral is converted to three summations. Angle ® is digitized for N® steps in the range

(0;2¼), angle ¯ is digitized for N¯ steps in the range (0; ¼), and angle ° is digitized for N° steps in

the range (0;2¼):

4 Mesh Generation

Implicit surfaces are commonly used for modelling purposes in numerous scienti…c applications,

including CAD system and computer graphics. Therefore there are various interests in constructing

a polyhedral representation of implicit surfaces [42]. In our case the representation in a triangular

patch model should allow …rstly a correct calculation of surface integrals and secondly a graphical

visualization of the particle. Di¤erent methods are available to create a geometric surface mesh.

To generate the superellipsoid shape for our light scattering simulations we are using the HyperFun

software tool [43], [44] which is a program supporting high-level language functional representations

in computer graphics. Function representation is a generalization of traditional implicit surfaces and

constructive solid geometry which allows construction of quite complex shapes such as isosurfaces of

real-valued functions composed of functionally de…ned primitives and operations [45]. The HyperFun
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polygonizer used for surface mesh generation generates VRML output of a triangular patch model.

HyperFun generates a su¢ciently regular mesh which, although intended for computer graphics, is

very well suited for our application as we found.

An example of gridding is shown with the rounded cubes given in Fig. 2. In these examples the

dimensions are a = b = c = 0:3¹m and the number of triangular patches are 1448, 1448, 1400.

In the standard method to compute surface integrals the parametric equation is used and thus an

equivalent integral in planar coordinates has to be evaluated. Thus partial derivatives of x;y;z with

respect to the parametrization (in our case parameters #; ') are needed which may not be available

analytically. If the partial derivatives are not available a numerical method via …nite di¤erences

may be used.

We use an alternative approach based on a modi…ed centroid quadrature that does not use the

partial derivatives. This modi…ed centroid quadrature has been proposed and investigated by Georg

and Tauch [46]. The surface integrals to be computed are approximated by

Z

S

f dS ¼
X

i

f(vi;c) area[vi;1; vi;2; vi;3] : (25)

Here, vi;1; vi;2; vi;3 are the vertices spanning a triangle and point vi;c denotes the centre of mass of

the triangle [vi;1; vi;2; vi;3] given by

vi;c =
1

3

3X

j=1

vi;j : (26)

Thus the integral over each triangle is approximated by multiplying the value of the integrand at

the centroid by the triangle area.

5 Numerical Simulations

5.1 Program Validation

The computer program based on the DSM theory has been checked using various internal checks

such as computing scattering by a shifted particle and comparing the result to scattering by the

original particle.
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Next the program has been validated by comparing to other programs. We used the T-Matrix

programs t1 included with the book by Barber and Hill [7]. The …rst result is for a spheroid

with dimensions of a = b = 500nm;c = 700nm: Practically no di¤erence has been found, as

can be seen by the normalized DSCS for p- and s-polarization plotted in Fig. 3. The T-Matrix

result is shifted versus the DSM result because Barber and Hill apply a di¤erent normalization

in the di¤erential scattering cross section (DSCS) computed. To check the routine for orientation

averaging the program t5 of Barber and Hill [7] is used to compute a reference result of the

orientation averaged DSCS for the same spheroid. The results of both computations are plotted in

Fig. 4 and there is perfect agreement between the results computed by the DSM program and the

t5 programm.

As another example for program validation scattering by an ellipsoid with dimensions a = 150; b =

200; c = 300nm will be presented in Fig. 5. The comparative result of the DSCS has been computed

with another implementation of the same theory [47]. As can be seen there is perfect agreement

between both results.

To present a …nal example of program validation for non-axisymmetric particles the 3D-Multiple

Multipole Program (MMP) of Hafner and Bomholt [48] was used for computation of a scattering

result of a rounded cube to compare with. This method is based on an expansion of the internal and

the scattered …eld into so called multipoles. A generalized point matching method is used to ful…ll

the boundary conditions on the surface of the scattering particle and to compute the coe¢cients

of the expansion functions. In the example given we used spherical vector wave functions for …eld

expansion. The FORTRAN code is available with the MMP book and this code has been modi…ed

such that a triangular surface patch model of the scattering particle could be read into the program

to be used for the point matching procedure. As mirror symmetry can be accounted for in the

MMP program only an eighths of the surface of the rounded cube has to be used for triangulation

into a triangular surface patch model. In the example presented this surface was covered by 1435

faces. The rounded cube was generated by the superellipsoid equation with the following parameters

e = n = 0:2; a = b = c = 2:0¹m: The computational results of the di¤erential scattering cross

section are plotted in Fig. 6 and Fig. 7. Apart from some di¤erent normalization of the DSCS there

is almost perfect agreement between the MMP and the DSM result.
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Nmax Mmax MNmax

20 18 434

22 20 522

25 25 726

Table 2: Number of expansion functions

5.2 Convergence

A profound convergence test is an important step in program testing. Two kinds of convergence

checks have to be made a) versus the number of triangular faces of the particles, corresponding to

the number of integration elements and b) versus the number of localized spherical vector wave

functions used for …eld expansion. Fig. 8 shows an exemplary result for a convergence test versus the

number of integration elements (faces) for a rounded cube with parameters a = 300nm;n = e = 0:2

and refractive index of M = 1:5. By comparing the curves it can be seen that convergence is

easily reached and from further investigation we conclude that convergence versus the number of

integration elements seems to be mainly uncritical and can easily be achieved. Of more importance

is a convergence check versus the number of expansion functions. This number depends on the

maximum value of the indices n and m (Nmax and Mmax) of the spherical vector wave functions

Mº and Nº . This number of expansion functions MNmax is given by

MNmax = Nmax + Mmax(2Nmax ¡Mmax+ 1) : (27)

This corresponds to a size of the transition matrix given by T(2MNmax;2MNmax): Various conver-

gence checks have been done to test the program for di¤erent shapes of scatterers. An exemplary

result of such a convergence test is given in Fig. 9 where the di¤erential scattering cross section is

plotted for a cube. The values of the parameters Nmax and Mmax used in the simulation and the

resulting corresponding number of expansion functions MNmax is summarized in table Tab. 2

5.2.1 Scattering by Rounded Cube

In the following section some sample results of single scattering by the superellipsoids pictured in

Fig. 2 will be presented.

Fig. 10 and Fig. 11 give the di¤erential scattering cross section of a cube with dimensions a =

b = c = 1:5¹m and di¤erent values of the two roundedness parameters. The …rst …gure gives

p-polarization and the second s-polarization.
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Scattering by even larger rounded cubes is plotted in the next …gures. Fig. 12 and Fig. 13 give

the di¤erential scattering cross section of a cube with dimensions and di¤erent values of the two

roundedness parameters. The in‡uence of roundedness is especially seen in p-polarization at a

scattering angle of 45 to 90 degrees.

Just a single examplary scattering result for orientation averaged scattering by a rounded cube with

roundedness parameters e; n = 0:5 is given in Fig. 14. p-and s-polarization results almost become

indistinguishable and the angular variation in the DSCS is much smoother than that for the same

particle in a …xed orientation.

5.2.2 Scattering by Realistically Shaped Particles

To demonstrate that scattering by an arbitrarily shaped particle is also possible with the program

developed, the shape of asteroid KY26 was used. Its shape is available as a triangular surface patch

model in the wavefront format in the internet [49]. There are 4092 faces in the data …le and the

dimension of the 0.030km asteroid was scaled down by a factor of 100¹m/km such that a particle

with a range of 2.92¹m in x, 2.65¹m in y and 2.77¹m in z resulted. Three di¤erent views of this

KY26 shaped particle are given in Fig. 15. The number of triangular faces was increased to 16.368

using a one-to-four triangular subdivision scheme. In Fig. 16 the di¤erential scattering cross section

is plotted. As orientation the orientation given in the original data …le is used with z being the

direction of the incident plane wave. In Fig. 17 the orientation averaged di¤erential scattering cross

section is given. It can be seen that the angular variation in the DSCS is smoother than that

computed for the same particle in a …xed orientation.

To demonstrate that scattering from realistically shaped particles can be computed a number

of photos from a pebble from di¤erent views were used to reconstruct a realistic particle shape.

Similarly electron micrography from di¤erent views of a small particle could be used to reconstruct

its 3D shape. The geometry of the pebble was reconstructed from an image sequence of apparent

contour pro…les from 20 di¤erent viewpoints taken by an electronic camera [50].

Three views of the reconstructed realistically shaped particle are shown in Fig. 18. The dimensions

of the particle were scaled such that its size in x is 2.176¹m in y is 1.585 and in z is 1.856¹m.

The shape of the particle was triangulated with 27745 faces. In Fig. 19 the orientation averaged

di¤erential scattering cross section of this particle is plotted.

To generate an arbitrarily shaped particle with a di¤erent amount of surface roughness the DOS
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program PovRockGen [51] was used. The dimensions of the particles generated are such that its

overall size in x is 2.026¹m in y is 2.026 and in z is 1.969¹m. The parameters to generate the

smooth particle are depth=4, smoothness=2.0 the parameters to generate the rough particle are

depth=4, smoothness=1.5. Originally 5120 surface triangles were generated. These were increased

to 20480 by an one-to-four triangular subdivision scheme.

The two di¤erent kinds of particle shapes generated and used for scattering computations are shown

in Fig. 20 and the orientation averaged computation results are plotted in Fig. 21. With the smooth

particle oscillations in the scattering diagram are more pronounced. With the rougher particle the

amount of cross polarization is ofcourse increased.

6 Conclusions

An e¢cient way for computing scattering by non-axisymmetric particles in the framework of the

null-…eld method with discrete sources has been presented. The superellipsoid has been introduced

to represent a wide range of realistic particle shapes. Additionally reading a triangular surface patch

model of a scattering particle has been implemented in the computational procedure.

Numerical experiments have been performed for superellipsoids representing a rounded dielectric

cube and some realistically shaped particles. It has been demonstrated that this method is very well

suited to compute the T-matrix for non-axisymmetric particles with an over all dimension of 4¹m

with a desktop computer. A Windows 9X program including graphical user interface for computing

scattering by superellipsoid is available from our web site [52].

The program has mainly been developed to investigate the e¤ect of particle shape with various

kind of methods and instruments in optical particle characterization such as intensity based optical

particle counters, intensity ratioing technique, visibility technique, Phase Doppler Anemometry,

di¤raction type of instruments, static light scattering etc.
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7 Appendix

The block elements of matrices A; B and A0 are given by

A11º¹ =

Z

S

£
(n£ ª1¹) ¢ ª3º + M(n £©1¹) ¢ ©3º

¤
dS ;

A12º¹ =

Z

S

£
(n£ ©1¹) ¢ ª3º +M(n £ª1

¹) ¢ ©3º
¤
dS ;

A21º¹ =

Z

S

£
(n£ ª1¹) ¢ ©3º +M(n £©1¹) ¢ ª3º

¤
dS ;

A22º¹ =

Z

S

£
(n£ ©1¹) ¢ ©3º +M(n£ ª1¹) ¢ ª3º

¤
dS ;

(28)

B11
º¹ =

jk2s
¼

Z

S

£
(n£ ª1¹) ¢ N1

º +M(n£ ©1¹) ¢ M1
º

¤
dS ;

B12
º¹ =

jk2s
¼

Z

S

£
(n£ ©1¹) ¢ N1

º + M(n£ ª1¹) ¢ M1
º

¤
dS ;

B21
º¹ =

jk2s
¼

Z

S

£
(n£ ª1¹) ¢ M1

º +M(n £ ©1¹) ¢ N1
º

¤
dS ;

B22
º¹ =

jk2s
¼

Z

S

£
(n£ ©1¹) ¢ M1

º +M(n£ ª1¹) ¢ N1
º

¤
dS ;

(29)

and

A110º¹ =

Z

S

£
(n£ M1

¹) ¢ ª3º + (n £N1
¹) ¢ ©3º

¤
dS ;

A120º¹ =

Z

S

£
(n£ N1

¹) ¢ ª3º + (n £M1
¹) ¢ ©3º

¤
dS ;

A210º¹ =

Z

S

£
(n£ M1

¹) ¢ ©3º + (n £N1
¹) ¢ ª3º

¤
dS ;

A220º¹ =

Z

S

£
(n£ N1

¹) ¢ ©3º + (n£ M1
¹) ¢ ª3º

¤
dS ;

(30)

respectively. Here, M is the refractive index and is given by M =
p

"i="s:
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9 Symbols and Abbriviations

a;b; c - bounds in x;y;z of the superellipsoid

(a0º ; b
0
º) - expansion coe¢cients of the incident …eld

(a0º ; b
0
º) - expansion coe¢cients of the incident …eld

Dmn-normalization constant

e - north-south roundedness of superellipsoid

E0; Es- incident and scattered …elds

(e; h) - surface current densities

(f0º ; g
0
º) - expansion coe¢cients of the scattered …eld

k - wavenumbern
M1;3
mn; N

1;3
mn

o
- localized vector spherical functionsn

M1;3
mn;N1;3

mn

o
- distributed vector spherical functionsn

M1;3
ni ; N1;3

ni

o
- magnetic and electric dipolesn

M1;3
n ; N1;3

n

o
- vector Mie-potentials

M - refractive index

n - east-west roundedness of superellipsoid

S - particle surface

[T] - transition matrix

(x;y; z) - cartesian coordinate

x - position vector

®§n (x) - Green function

®; ¯;° - Euler angles

(#; ') - angular coordinates

² - permittivity

¸0-wavelength in vacuum

¹ - permeability

vi - vertex points on particle surface
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10 List of Figure Captions

Fig. 1: Examples of superellipsoids with parameters: e = 0:2; 1:0; 1:0; 0:2; 2:0 and n = 0:2; 0;2;1:0;1:0;2:0.

(left to right). a = b = c = 1:0.

Fig. 2: Form of rounded cubes used for computation e = n = 0:2;0:5;0:7 (left to right). In the

examples the dimensions are a = b = c = 0:3¹m and the number of triagular patches are 1448,

1448, 1400.

Fig. 3: Di¤erential scattering cross section of spheroid a = b = 500nm;c = 700nm, 10725 faces,

Nmax = 16; Mmax = 15; M = 1:5; ¸ = 628:31nm:

Fig. 4: Orientation averaged di¤erential scattering cross section of spheroid a = b = 500nm; c =

700nm, 10725 faces, 1000 orientations, Nmax = 16;Mmax = 15;M = 1:5; ¸ = 628:31nm:

Fig. 5: Di¤erential scattering cross section of ellipsoid a = 150; b = 200; c = 300nm;11656 faces,

64*64, M = 1:5, ¸ = 628:31nm; pol = 45±; alpha = beta = 45±

Fig. 6: Di¤erential scattering cross section (p polarization) of rounded cube with parameters

e = n = 0:2; a = b = c = 1000nm, Nmax = 20; Mmax = 18;M = 1:5;¸ = 628:31nm, DSM: 14648

faces; MMP 1/8 of cube with 1435 faces.

Fig. 7: Di¤erential scattering cross section (s polarization) of rounded cube with parameters e =

n = 0:2; a = b = c = 1000nm; Nmax = 20; Mmax = 18; M = 1:5; ¸ = 628:31nm; DSM: 14648 faces;

MMP 1/8 of cube with 1435 faces.

Fig. 8: DSCS computed for convergence test versus number of integration points (faces) for a cube.

a = b = c = 300nm, n = e = 0:2,Nmax = 10;Mmax = 7;M = 1:5;¸ = 628:31nm:

Fig. 9: DSCS computed for convergence test versus number of expansion functions MNmax for a

cube a = b = c = 1000nm; n = e = 0:5, faces = 14648, M = 1:5;¸ = 628:31nm:
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Fig. 10: Di¤erential scattering cross section (p polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 1500nm; Nmax = 30;Mmax = 28, 33464 faces, M = 1:5; ¸ = 628:31nm.

Fig. 11: Di¤erencial scattering cross section (s polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 1500nm; Nmax = 30;Mmax = 28;33464 faces;M = 1:5;¸ = 628:31nm:

Fig. 12: Di¤erential scattering cross section (p polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 2000nm; Nmax = 39;Mmax = 38, 76220 faces, M = 1.5, ¸ = 628:31nm:

Fig. 13: Di¤erential scattering cross section (s polarization) of rounded cube with di¤erent values

of e and n; a = b = c = 2000nm; Nmax = 39;Mmax = 38, 76220 faces, M = 1.5, ¸ = 628:31nm.

Fig. 14: Orientation averaged di¤erential scattering cross section of rounded cube with e = n =

0:5; a = b = c = 2000nm;Nmax = 39; Mmax = 38; 76220 faces, 2744 orientation, M = 1:5; ¸ =

628:31nm:

Fig. 15: Three views of ky26 shaped particle scaled down by 100¹m/km.

Fig. 16: Di¤erential scattering cross section of ky26 shaped particle, Nmax = 10;Mmax = 7, 4092

faces, M = 1:5,¸ = 628:31nm:

Fig. 17: Oriention averaged di¤erencial scattering cross section of ky26 shaped particle, 1000 ori-

entations, Nmax = 10; Mmax = 7, 4092 faces, M = 1:5,¸ = 628:31nm:

Fig. 18: Three views of “realistically” shaped particle.

Fig. 19: Oriention averaged di¤erential scattering cross section of “real” shaped particle, 1728

orientations, Nmax = 20; Mmax = 17, 28032 faces, M = 1:5, ¸=628.31nm.

Fig. 20: Shape of smooth (left) and rough (right) particle.

Fig. 21: Oriention averaged di¤erential scattering cross section of smooth and rough particle, 1728

orientations, Nmax = 20; Mmax = 17, 20480 faces, M = 1:5; ¸ = 628:31nm:

1 2 3 4 5 6

Fig. 1: Examples of superellipsoids with parameters: e = 0:2;1:0;1:0;0:2;2:0 and n =

0:2;0; 2; 1:0; 1:0; 2:0. (left to right). a = b = c = 1:0.
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Fig. 2: Form of rounded cubes used for computation e = n = 0:2;0:5;0:7 (left to right). In the

examples the dimensions are a = b = c = 0:3¹m and the number of triagular patches are 1448,

1448, 1400.
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Fig. 3: Di¤erential scattering cross section of spheroid a = b = 500nm;c = 700nm, 10725 faces,

Nmax = 16; Mmax = 15; M = 1:5; ¸ = 628:31nm:
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Fig. 4: Orientation averaged di¤erential scattering cross section of spheroid a = b = 500nm; c =

700nm, 10725 faces, 1000 orientations, Nmax = 16;Mmax = 15;M = 1:5; ¸ = 628:31nm:
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Fig. 5: Di¤erential scattering cross section of ellipsoid a = 150; b = 200; c = 300nm; 11656 faces,

64*64, M = 1:5, ¸ = 628:31nm; pol = 45±; alpha = beta = 45±
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Fig. 6: Di¤erential scattering cross section (p polarization) of rounded cube with parameters

e = n = 0:2; a = b = c = 1000nm, Nmax = 20; Mmax = 18;M = 1:5;¸ = 628:31nm, DSM: 14648

faces; MMP 1/8 of cube with 1435 faces.
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Fig. 7: Di¤erential scattering cross section (s polarization) of rounded cube with parameters e =

n = 0:2; a = b = c = 1000nm; Nmax = 20; Mmax = 18; M = 1:5; ¸ = 628:31nm; DSM: 14648 faces;

MMP 1/8 of cube with 1435 faces.
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Fig. 8: DSCS computed for convergence test versus number of integration points (faces) for a cube

a = b = c = 300nm, n = e = 0:2, Nmax = 10;Mmax = 7;M = 1:5;¸ = 628:31nm
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Fig. 9: DSCS computed for convergence test versus number of expansion functions Nmax for a cube

a = b = c = 1000nm;n = e = 0:5, faces = 14648, M = 1:5;¸ = 628:31nm

0 45 90 135 180

scattering angle / deg

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02
DSCS

p-polarization
n=e:
--- 0.2
- - 0.5
--- 0.7

Fig. 10: Di¤erential scattering cross section (p polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 1500nm; Nmax = 30;Mmax = 28, 33464 faces, M = 1:5; ¸ = 628:31nm.
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Fig. 11: Di¤erencial scattering cross section (s polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 1500nm; Nmax = 30;Mmax = 28; 33464 faces, M = 1:5; ¸ = 628:31nm:
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Fig. 12: Di¤erential scattering cross section (p polarization) of rounded cube with di¤erent values

of e and n, a = b = c = 2000nm; Nmax = 39;Mmax = 38, 76220 faces, M = 1.5, ¸ = 628:31nm:



30 Wriedt, 28.1.2002

0 45 90 135 180

scattering angle / deg

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02
DSCS

s-polarization n=e:
--- 0.2
- - 0.5
--- 0.7

Fig. 13: Di¤erential scattering cross section (s polarization) of rounded cube with di¤erent values

of e and n; a = b = c = 2000nm; Nmax = 39;Mmax = 38, 76220 faces, M = 1.5, ¸ = 628:31nm.
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Fig. 14: Orientation averaged di¤erential scattering cross section of rounded cube with e = n =

0:5; a = b = c = 2000nm;Nmax = 39; Mmax = 38; 76220 faces, 2744 orientation,M = 1:5; ¸ =

628:31nm:
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Fig. 15: Three views of ky26 shaped particle scaled down by 100¹m/km.
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Fig. 16: Di¤erential scattering cross section of ky26 shaped particle, Nmax = 10;Mmax = 7, 4092

faces, M = 1:5,¸ = 628:31nm:
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Fig. 17: Oriention averaged di¤erencial scattering cross section of ky26 shaped particle, 1000 ori-

entations, Nmax = 10; Mmax = 7, 4092 faces, M = 1:5,¸ = 628:31nm:

Fig. 18: Three views of “realistically” shaped particle.
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Fig. 19: Oriention averaged di¤erential scattering cross section of “real” shaped particle, 1728

orientations, Nmax = 20; Mmax = 17, 28032 faces, M = 1:5, ¸=628.31nm.

Fig. 20: Shape of smooth (left) and rough (right) particle.
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Fig. 21: Oriention averaged di¤erential scattering cross section of smooth and rough particle, 1728

orientations, Nmax = 20; Mmax = 17, 20480 faces, M = 1:5; ¸ = 628:31nm:


