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Abstract

To the best of our knowledge this is the first set of Mie functions to appear, devel-
oped in MATLAB (version 6, release 12;c©Mathworks), that tackles then-layer
sphere problem. That is to say it includes functions for the calculation of the Mie
coefficientsan andbn, efficiencies of extinction, scattering and backscattering, the
polarisation ratio and finally the angular scattering elementsS11, S12, S33 andS34.
From the latter, calculation of the light intensity is provided as well as the degree of
polarisation. An approximation of the absorption efficiency is also included within
(i.e.Qabs u Qext −Qsca).

It is assumed that the magnetisation of the particle is governed by the magnetisa-
tion of the ambient medium, and as such the magnetic permeability between the
particle and the medium is unchanged. Required input parameters is the vector of
size parameter (x = kr wherek = 2π/λ, λ being the incident wavelength andr
the radius vector). The vector of the size parameter hasn dimensions, that is to
say, as many as the number of layers we employ. Another input is the vector of
complex relative refractive indices, corresponding to each of thex-vector values
(implied compartments/layers), the angular range in radians (θ ∈ [0, π]) and infor-
mation about the incident light source; namely the state of polarisation and incident
power. All input values must be expressed in the micro units range (e.g.µm, µW ).
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Chapter 1

Introduction

“A likely impossibility is always preferable to an unconvincing possibility”
Aristotle, Rhetoric

Light scattering is the secondary radiation scattered by the induced oscillatory mo-
tion of protons/electrons within an obstacle when illuminated by a light source.
This secondary radiation relates to the heterogeneity of the system (i.e. collection
of particles constituting the obstacle). As such the interaction of a beam of light
with any medium will result in the rise of scattering also known as density fluctua-
tions. Other types of fluctuations also appear, for example concentration and orien-
tation fluctuations. However when we are interested on the light scattering by parti-
cles, a fluctuation is not a particle in that sense. After all, scattering by fluctuations
are usually much less than scattering by particles (p7 [Bohren and Huffman 1998]).

Even though we are interested in the microscopic world (small particles), one
would in theory solve the heterogeneous particle problem defined within Maxwell
equations. In that sense, [Mie 1908] was the first to provide a solution to the scat-
tering and absorption by homogeneous spheres. Since then several papers have
appeared that refine and extent the theory for non-symmetrical particles, sphere
with inclusions and so on (e.g. [Wiscombe 1980]).

Under the paradigm of biological cells1 and in particular bacterial cells, it has been
indicated that laser scattering techniques will play a significant role in partial iden-
tification, characterisation and clinical examination of such samples. For example
in [Ulanowski et.al. 1987, Ulanowski et.al. 1993], angular light scattering data ob-
tained from a goniometric module are interpreted by means of a 2-layer Mie model
(p.181–183, [Bohren and Huffman 1998]).

However, most prokaryotic cells are of a complex makeup. In general the cell
presents a structure that consists mainly of the cell wall, the plasma or cytoplasmic
membrane, the cytoplasm and the nucleoid. Other morphological characteristics
may also appear such as a slime layer (capsule) outside the cell wall or inclusions
within the cell’s cytoplasm (e.g. spores, granules). For identification purposes,
the structure of the cell wall plays an important role. A Gram positive cell wall is
generally described as arigid structureof chemical composition as in Figure 1.1.

Therefore, in order to generate a more accurate representation of the cell, one
1Bear in mind though that the Matlab functions supplied here are not limited to the input values

that apply for biological cells
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Figure 1.1: A Gram (+) cell wall: Chemical composition. Notice that thecapsule
layer only appears if condensed polymers form and is an indication of virulence.

would model it as having various compartments within its volume and within these
compartments the refractive index is different from that of the surrounding objects.
In cells where the overall morphology can be approximated that of a sphere (e.g.
cocci), each of the structures internal or external to the plasma membrane can be
modelled as a different layer in ann-layered spherically symmetric inhomogeneous
particle.

Other examples include characterisation of anthropogenic aerosols from lidar sound-
ing data, which contain multiple layers of soil erosion, salt, soot, organic and other
compound or even that of atmospheric sensing where the rain drop particles can
be characterised by multiple layers of water of different thickness and composition
(e.g. multiple ice/ liquid/ ice interfaces and so on).

In this report we are implementing the solution provided by [Volkov et.al. 1990],
and for the scattering by particles with radially variable refractive indices, or the
n-layer problem. The reader is also advised to study the solutions provided in
the literature [Perelman 1996, Bhandari 1985], but is warned that the expressions
therein are not explicit.
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Chapter 2

The n-layer Mie Solution

2.1 Mie Coefficients

MATLAB function: nlayerScaCoeff

The problem is adequately described in Figure 2.1. In general, we havek =
1, 2, · · · , n, · · · , N compartments placed radially symmetric around the core with
radiusr1 and relative refractive indexm1. For simplicity we are using the size
parameter notationxk wherex = (2π/λ), with λ being the wavelength of the
incident light source. It is assumed that the magnetisation of the particle is gov-
erned by the magnetisation of the ambient medium, and as such the magnetic
permeability between the particle (µk) and the medium (µ) is unchanged (i.e.
µ = µ1 = · · · = µN ).

The explicit equations for the Mie coefficientsan andbn of the scattering series of
then-layered inhomogeneous sphere of [Volkov et.al. 1990], can be used in that
respect. In general these equations have the form

Figure 2.1: An n-layered concentric sphere:k = 1, 2, · · · , n, · · · , N
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In Equations 2.1-2.5, the notation used is such thatψ(mL, xk) = ψn
L,k; ψn(xk) =

ψn
k ; ψ′(mL, xk) = (ψ)n

L,k
1; ψ′

n(xk) = ψn
k ; and similarly for the functionsκ andξ.

The reader is reminded that the functionsψ(p) andκ(p) follow the Ricatti-Bessel
function of the first (Matlab function:RB1) and second kind (Matlab function:
RB2) respectively, whilstξ(p) follows the Hankel function [Spiegel and Liu 1999].
The reader should also have in mind the recurrence relations used in our code,

zn−1(p) + zn+1(p) =
2n+ 1
p

zn(p) (2.6)

(2n+ 1)
d

dp
zn(p) = nzn−1(p)− (n+ 1)zn+1(p) (2.7)

wherez denotes either of the said Bessel functions.

An important consideration to be made is the number of termsan, bn required in
order for the scattering series (Section 2.2) to converge. The convergence crite-
rion of [Wiscombe 1980] is used, even though it was derived for the homogeneous

1note thatz′(p) ≡ d
dp

z(p)
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sphere problem. There is no evidence in the literature that this criterion is flawed
for n layers and so it is adopted here. In effect, the maximum number of termsnc

to be calculated, and forx = xN follows the schema

nc =


x+ 4x1/3 + 1, x ∈ [0.02, 8]
x+ 4.05x1/3 + 2, x ∈ (8, 4200]
x+ 4x1/3 + 2, x ∈ (4200, 20000]

(2.8)

However, it has been indicated in many publications (e.g. [Ludlow and Everitt 1996])
that even if only the criterion (x+4.05x1/3+2) is used, the difference in the results
is negligible.

2.2 Scattering Amplitude, far field

MATLAB function: nlayerAmp

For obtaining detailed information on the shape of the angular scattering pattern,
there is a need to calculate the scattering functions, denoted here byS1 andS2.
These functions describe the scattered field and can be used when we approximate
the so-called far-field; that is to say, the scattering observation is made at a dis-
tance sufficiently larger than than of the particle’s largest linear dimension. The
expressions provided in the said Matlab function follow the functional form

S1(θ) =
nc∑

n=1

2n+ 1
n(n+ 1)

(anπn + bnτn) (2.9)

S2(θ) =
nc∑

n=1

2n+ 1
n(n+ 1)

(anτn + bnπn) (2.10)

where the functionsπ andτ are the Associated Legendre Polynomials (calculated
in Matlab function:ALegendr ). The maximum number of terms (nc) to be cal-
culated in the series of Equations 2.9,2.10 follows the schema of Equation 2.8.
Consequently, the scattering matrix elements can be computed by applying

S11 = S2S̃2 + S1S̃1 = 1
2(|S1|2 + |S2|2)

S12 = S2S̃2 − S1S̃1 = 1
2(|S1|2 − |S2|2)

S33 = 1
2(S̃2S1 + S2S̃1)

S34 = ı
2(S1S̃2 − S2S̃1)

(2.11)

where the symbol̃S denotes the complex conjugate ofS and ı2 = −1 . The
physical meaning of the scattering amplitudesS1 andS2 relates to the incident light
being polarised perpendicular and parallel to the scattering plane, respectively. To
that effect using the scattering elements as defined in Equations 2.11 one would
in theory calculate the light intensity scattered by a multilayered spherical particle
and for any state of polarisation (Matlab function:nlayerIntensity ). This is
the subject of Section 2.2.1 that follows.
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2.2.1 Scattered Intensity, in arbitrary units

MATLAB function: nlayerIntensity

The scattered intensity denoted asIs(θ) is directly related to the state of polarisa-
tion of the incident light intensityIo to a particular scattering plane (i.e. in our case,
the horizontal scattering plane). As a result it is often needed to obtain results for
parallel, perpendicularpolarisation as well asunpolarisedincidence. In as such,
it can be shown that

Is(θ) =


1
x2 (S11 + S12)Io, parallel polarisation
1
x2 (S11 − S12)Io, perpendicular polarisation
1
x2 (S11)Io, unpolarised

(2.12)

The reader is reminded thatx = kr, wherek = 2π/λwith λ being the wavelength.

2.3 Multi-layer Efficiencies

MATLAB function: nlayerEfficiencies

Equations 2.1-2.2 in conjunction with Equation 2.8, can be used to determine the
scattering (Csca), extinction (Cext) and backscattering (Cbac) cross sections and
as such the corresponding efficiencies. Theseefficienciesare dimensionless cross
sections in their true meaning. For example, the Extinction Efficiency denoted by
Qext, may be interpreted as defined measurable quantity of the ’shadow’ of area
Cext that may be casted on a detector by a particle. That is to say a particle will
reduce detector area byCext with an efficiencyQext. Following the same series
form for that of a homogeneous particle but taking into account that the radius of
the multi-layered sphere isrN (corresponding size parameterxN ), we have that

Qsca = 2
x2

N

∑nc
n=1(2n+ 1)(|an|2 + |bn|2)

Qext = 2
x2

N

∑nc
n=1(2n+ 1) <{an + bn}

Qbac = 1
x2

N
|
∑nc

n=1(2n+ 1)(−1)n(an − bn)|2
(2.13)

where< denotes the real part of the resulting complex number(an + bn). From
Equations 2.13 we can now approximate the Absorption EfficiencyQabs asQabs u
Qext −Qsca. Note that the conditionCabs ≤ Cext must always be satisfied.

2.3.1 Degree of polarisation

MATLAB function: DegreeOfPolarisation

From Equations 2.11 all ratios of interest can be calculated. In particular the ratio
(S12/S11) which corresponds to the polarisation ratioP . In as much using

P = −S12

S11
, |P | 6 1 (2.14)
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the behaviour of the scattered light can be determined. That is to say, ifP > 0
the scattered light is partially polarised perpendicular to the scattering plane and
if P 6 0 the scattered light is partially polarised parallel to the scattering plane.
The degree of polarisation is the absolute value of the said ratio. It follows that
P (0◦) = P (180◦) = 0, regardless of size and composition of the particle.
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Chapter 3

The Computer Code

3.1 Comments on functions

In terms of the cooperation between the functions and the way they are struc-
tured, a generalised view can be seen in Figure 3.1. The functions RB1 and
RB2 are generating functions tonlayerScaCoeff ; that is to say, the calcu-
lation of the coefficients in the Mie series uses the Ricatti Bessel functions as
shown in the corresponding code of Section 3.2. Similarly, the Associated Leg-
endre polynomials (functionALegendr ) are used as a generating function for
the calculation of the Scattering Amplitude and the corresponding Scattering El-
ements (functionnLayerAmp ) in conjunction with the coeeficients calculated
in the Mie series (functionnlayerScaCoeff ). The number of terms to be
calculated obeys the schema described in Equation 2.8 and has been incorpo-
rated innlayerScaCoeff . As such the main routines are shown in Figure 3.1
to be the Matlab functionsnlayerScaCoeff andnLayerAmp . These main
routines provide the results that can be produced using the Resulting Functions:
nlayerEfficiencies , DegreeOfPolarisation andnlayerIntensity .

Figure 3.1: Structure of interaction between the Matlab functions: Generating
Functions→ Main Routines→ Resulting Functions
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3.2 Generating Functions

3.2.1 The functions RB1 and RB2

% RB1 the Ricatti-Bessel function of the first kind
% RB1(rho, nmax) for the value rho from n=1 to n=nmax.

function phi = RB1(rho, nmax)

rho=rho(:).’;

nst = ceil(nmax + sqrt(101+max(rho)));

phi= zeros(nst,length(rho));

phi(nst-1,:) = 1e-10;

for n=nst-2:-1:1
phi(n,:) = (2 * n+3) * phi(n+1,:)./rho - phi(n+2,:);

end

phi0 = 3 * phi(1,:)./rho - phi(2,:);

phi0 = sin(rho)./phi0;

phi = phi(1:nmax,:) . * (ones(nmax,1) * phi0);

====================================================

% RB2 the Ricatti-Bessel function of the second kind
% RB2(rho, nmax) for the value rho from n=1 to n=nmax.

function zeta = RB2(rho, nmax)

rho = rho(:).’;

zeta = zeros(nmax,length(rho));

zeta(1,:) = -cos(rho)./rho - sin(rho);

zeta(2,:) = 3 * zeta(1,:)./rho + cos(rho);

for n=3:nmax
zeta(n,:) = (2 * n-1) * zeta(n-1,:)./rho - zeta(n-2,:);

end

3.2.2 The function ALegendr

% ALegendr the angular dependent Associated Legendre Polynomials
% [p,t]=ALegendr(ang, nmax)
% produces matrices p and t with rows n=1 to n=nmax
% for pi and tau functions rescpectively.

function [p,t] = ALegendr(ang, nmax)

p(1,:) = ones(1,size(ang,2));

t(1,:) = cos(ang);

p(2,:) = 3 * cos(ang);

t(2,:) = 2 * cos(ang). * p(2,:)-3;

for n=3:nmax
p(n,:) = ((2 * n-1) * cos(ang). * p(n-1,:) - n * p(n-2,:))/(n-1);
t(n,:) = n * cos(ang). * p(n,:) - (n+1) * p(n-1,:);
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end

3.3 Main Routines

3.3.1 The function nLayerAmp

% Scattering Amplitute Elements of scattered light.
% nlayerAmp(m,x,Io,ang) returns the scattered Light for
% a sphere, size x, refractive index relative to medium m
% at angle ang.
%

function S = nlayerAmp(m, x, ang)

if length(x)==1
x = x * ones(size(m));

end if length(m)==1
m = m* ones(size(x));

end
% criteria for number of terms in Mie Series
% (Number of coefficients nlayerScaCoeff to be calculated)
% Wiscombe(1980), Applied Optics, 19(9), 1505
nc = ceil(max(x)+4.05 * (max(x)ˆ(1/3))+2); n=(1:nc).’;

E = ((2 * nc+1)/(nc * (nc+1))); [p,t] = ALegendr(ang,nc); W = warning;
warning off [a,b] = nlayerScaCoeff(m,x,nc);
% Check for invalid (NaN) results due to too many terms in
% relatively small particles.
invalid = find(any(isnan([a;b]))); while ˜isempty(invalid)

a(:,invalid) = 0;
b(:,invalid) = 0;
nc2 = ceil(max(x(invalid))+4.05 * (max(x(invalid))ˆ(1/3))+2);
[A,B] = nlayerScaCoeff(m(invalid),x(invalid),nc2);
a(1:nc2,invalid) = A;
b(1:nc2,invalid) = B;
invalid = find(any(isnan([a;b])));
% remove invalidity of zero m or x
% these _should_ return NaN!
if length(x)>=max(invalid)

invalid = invalid(x(invalid)˜=0);
else

if x==0
invalid = [];

end
end
if length(m)>=max(invalid)

invalid = invalid(m(invalid)˜=0);
else

if m==0
invalid = [];

end
end

end warning(W);

a = a. * E; b = b. * E;

% The scattering amplitute functions
S1 = a.’ * p + b.’ * t; S2 = a.’ * t + b.’ * p;

% The scattering matrix elements (Mueller Matrix)

S11 = ((S2. * conj(S2))+(S1. * conj(S1)))/2;

S12 = ((S2. * conj(S2))-(S1. * conj(S1)))/2;

S33 = ((S1. * conj(S2))+(S2. * conj(S1)))/2;

S34 = i * ((S1. * conj(S2))-(S2. * conj(S1)))/2;
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S = [S11; S12; S33; S34];

3.3.2 The function nlayerScaCoeff

% Perform calculation of the Scattering Coefficients (Mie Series)
% for the n-layered sphere. Max number of Coeff denoted by nmax
%
% [a_n,b_n] = nlayerScaCoeff(m,x,nmax,nlayers);
% x is the vector of size parameter (k. * radius) per compartment relating to
% the vector of relative refractive indices m function

[a_n,b_n] = nlayerScaCoeff(m,x,nmax,nlayers)

m = m(:).’;
x = x(:).’;
nlayers = length(x);
if length(x)==1

x = x * ones(size(m));
end
if length(m)>1 & length(x)˜=length(m)

error(’Dimensions of x & m must be the same or scalar’)
end N = ((1:nmax).’) * ones(1,length(x));

% Ricatti-Bessel functions

psi = RB1(x, nmax); psim = RB1(m. * x, nmax);

% Ricatti-Bessel function for variable m(k+1) * x(k) of k number of layers

psimKplus1 = zeros(nmax,length(x)); for k = 1:(nlayers-1)
psimK = RB1(m(k+1) * x(k), nmax);
psimKplus1(:,k+1) = psimK;
k=k+1;

end
correctpsimn_1 = [0, sin(m(2:nlayers). * x(1:(nlayers-1)))];

% and for (n-1) series terms Ricatti-Bessel

psimKplus1n_1 = [correctpsimn_1; psimKplus1(1:(nmax-1),:)];

% Ricatti-Bessel functions

kappa = RB2(x, nmax); kappam = RB2(m. * x, nmax);

% Ricatti-Bessel function for variable m(k+1) * x(k) of k number of layers

kappamKplus1 = zeros(nmax,length(x)); for k = 1:(nlayers-1)
kappamK = RB1(m(k+1) * x(k), nmax);
kappamKplus1(:,k+1) = kappamK;
k=k+1;

end
correctkappan_1 = [0, -cos(m(2:nlayers). * x(1:(nlayers-1)))];
kappamKplus1n_1 = [correctkappan_1;kappamKplus1(1:(nmax-1),:)]; % (n-1) terms

% Hankel function

xi = psi - i * kappa;

% Ricatti-Bessel function for variable m(k+1) * x(k) of k number of layers,
% for (n-1) terms in series

psin_1 = [sin(x);psi(1:(nmax-1),:)]; psimn_1 =
[sin(m. * x);psim(1:(nmax-1),:)]; kappan_1 =
[-cos(x);kappa(1:(nmax-1),:)]; kappamn_1 =
[-cos(m. * x);kappam(1:(nmax-1),:)];

% correction to avoid error in matrix/array dimensions
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if length(m)>1
mm = ones(nmax,1) * m;

end
if length(x)>1

xx = ones(nmax,1) * x;
end

% Calculation of the first derivative of the nth order R-B function

% Refer to Bohren and Huffman (1998), Wiley, pp86-87

dpsi = psin_1-N. * psi./xx; dpsim = psimn_1-N. * psim./(mm. * xx);
correctionA = [ones(1,nmax); (mm(:,2:nlayers). * xx(:,1:(nlayers -
1))).’].’; dpsimKplus1 = psimKplus1n_1 -
N. * psimKplus1./correctionA; dkappa = kappan_1-N. * kappa./xx;
dkappam = kappamn_1-N. * kappam./(mm. * xx); dkappamKplus1 =
kappamKplus1n_1 - N. * kappamKplus1./correctionA; dxi = dpsi - i *
dkappa;

% Main routine. Reference: Volkov and Kovach(1990),
% Izvestiya Atmospheric Oceanic Physics, 26(5), 381-385

A_k = zeros(nmax,1); B_k = zeros(nmax,1);

for k = 1:(nlayers-1)
a_k = m(k). * kappam(:,k). * dpsimKplus1(:,k+1) -
m(k+1). * dkappam(:,k). * psimKplus1(:,k+1);

dash_a_k = m(k). * kappam(:,k). * dkappamKplus1(:,k+1) -
m(k+1). * dkappam(:,k). * kappamKplus1(:,k+1);

b_k = m(k). * dkappam(:,k). * psimKplus1(:,k+1) -
m(k+1). * kappam(:,k). * dpsimKplus1(:,k+1);

dash_b_k = m(k). * dkappam(:,k). * dkappamKplus1(:,k+1) -
m(k+1). * kappam(k). * dkappamKplus1(:,k+1);

numA_k = (m(k+1). * psimKplus1(:,k+1). * dpsim(k) -
m(k). * dpsimKplus1(:,k+1). * psim(:,k) + A_k. * a_k);

denomA_k = (m(k+1). * kappamKplus1(:,k+1). * dpsim(:,k) -
m(k). * dkappamKplus1(:,k+1). * psim(:,k) + A_k
. * dash_a_k);

A_k = numA_k ./ denomA_k;

numB_k = (m(k+1). * psim(:,k). * dpsimKplus1(:,k+1) -
m(k). * psimKplus1(:,k+1). * dpsim(:,k) + B_k. * b_k);

denomB_k = (m(k+1). * psim(:,k). * dkappamKplus1(:,k+1) -
m(k). * dpsim(:,k). * kappamKplus1(:,k+1) + B_k
. * dash_b_k);

B_k = numB_k ./ denomB_k;
end

NUMa_n = psi(:,nlayers) . * (dpsim(:,nlayers) - A_k . *
dkappam(:,nlayers)) - m(nlayers). * dpsi(:,nlayers) . *
(psim(:,nlayers) - A_k. * kappam(:,nlayers));

DENOMa_n = xi(:,nlayers) . * (dpsim(:,nlayers) -
A_k. * dkappam(:,nlayers)) - m(nlayers). * dxi(:,nlayers) . *
(psi(:,nlayers) - A_k. * kappam(:,nlayers));

NUMb_n = m(nlayers). * psi(:,nlayers) . * (dpsim(:,nlayers) - B_k . *
dkappam(:,nlayers)) - dpsi(:,nlayers) . * (psim(:,nlayers) -
B_k. * kappam(:,nlayers));

DENOMb_n = m(nlayers). * xi(:,nlayers) . * (dpsim(:,nlayers) -
B_k. * dkappam(:,nlayers)) - dxi(:,nlayers) . * (psi(:,nlayers) -

13



B_k. * kappam(:,nlayers));

% the coefficients...

a_n = NUMa_n ./ DENOMa_n; b_n = NUMb_n ./ DENOMb_n;

3.4 End Result Functions

3.4.1 The Function nlayerIntensity

% I = nlayerIntensity(x, m, Io, ang, polarisation);
%
% Io is the incident light’s power.
% Polarisation is an option for incident light polarisation state
% as opposed to the reference scattering plane:
% Polarisation = 0 ==> unpolarised
% Polarisation = 1 ==> perpendicular
% Polarisation = 2 ==> parallel

function I = nlayerIntensity(x, m, Io, ang, polarisation)

S = nlayerAmp(m, x, ang);

if polarisation == 0
% assuming incident light is unpolarised
I = (1/(max(x))ˆ2) . * S(1,:) . * Io;

elseif polarisation == 1
% assuming incident light is polarised parallel
% to the scattering plane
I = (1/(max(x))ˆ2) . * (S(1,:) + S(2,:)) . * Io;

elseif polarisation == 2
% assuming incident light is polarised perpendicular
% to the scattering plane
I = (1/(max(x))ˆ2) . * (S(1,:) - S(2,:)) . * Io;

end

3.4.2 The Function nlayerEfficiencies

function [Q_sca,Q_ext,Q_back,Q_abs] = nlayerEfficiencies(m,x)

nc = ceil(max(x)+4.05 * (max(x)ˆ(1/3))+2); [a,b] =
nlayerScaCoeff(m,x,nc);

% scattering efficiency
Q_sca = (2/(max(x)ˆ2)) . * sum((2 * length(a)+1) . * (abs(a).ˆ2 +
abs(b).ˆ2));

% extinction efficiency
% BEWARE OF THE EXTINCTION PARADOX [Bohren and Huffman 1998, p107]
Q_ext = (2/(max(x)ˆ2)) . * sum((2 * length(a)+1) . * (real(a + b)));

% backscatter efficiency
Q_back = (1/(max(x)ˆ2)) . * ((abs(sum((2 * length(a)+1) . *
(-1ˆ(length(b))) . * (a - b)))).ˆ2);

% heuristic efficiency for radiation pressure
% (ie the force exerted on the particle by the laser beam)
% Q_h_pressure = Q_ext -
% (4/(max(x)ˆ2)) * (sum( (nc * (nc+2)/(nc+1)) . * real(a . * conj([0 a(nc+1,:)]) +
% b .* conj([0 b(nc+1,:)])) ) + sum((2 * nc+1/nˆ2 + nc) . * real(a. * conj(b))))
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% approximate value for the absorption efficiency Q_abs
Q_abs = Q_ext - Q_sca;
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3.4.3 The Function DegreeOfPolarisation

% ratioP = DegreeOfPolarisation(x, m, ang);
%
% Results in ratioP = [magP; P] where
% Polarisation ratio P and Degree of polarisation magP for the scattered light.
%
% In all cases magP <= 1 and P(0)=P(180)=0
% It is known that if
% P > 0 ==> Scattered light is partially polarised parallel to the
% scattering plane
% P < 0 ==> Scattered light is partially polarised perpendicular to the
% scattering plane
%

function [P, magP] = DegreeOfPolarisation(x, m, ang);

S = nlayerAmp(m, x, ang);

% || scattered iradiance per unit incident irradiance assuming incident light polarised
% perpendicular to the scattering plane
% PerIrradiance = (S(1,:) + S(2,:));
% _|_ scattered iradiance per unit incident irradiance assuming incident light polarised
% parallel to the scattering plane
% ParIrradiance = (S(1,:) - S(2,:));

% Polarisation Ratio
P = - (S(2,:) ./ S(1,:));
% Degree of Polarisation
magP = abs(P);

figure plot(ang, magP)

figure plot(ang, P)
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Chapter 4

Illustration and Examples

4.1 General Comments

It should be noted in this stage that all input parameters have to be expressed in the
micro-range. For example and for the input parameter of sizex, the wavelength of
say514nm has to be re-formulated as0.514µm. As a result to calculatex at the
command prompt one should type

>> lambda = 0.514;

>> k = 2 * pi / lambda;

>> r = [1.0 1.1];

>> x = k . * r;
>>

where the two layered sphere has a core radius of1µm and overall radius1.1µm,
i.e. the thickness of the outmost layer is0.1µm.

The reader is also reminded that MATLAB, calculates angles in radians and as a
result all angles must be printed in radians. That is to say, to define the input pa-
rametertheta one should type

>> theta = linspace(0,pi,1000);

where a linear space of 1000 discrete values has been generated from0 toπ radians,
corresponding to an angleθ of 0o to 180o.

4.2 Calculation of Scattered Intensity

In order to calculate the scattered light intensity from the2−layer sphere described
above, the Matlab functionnlayerIntensity should be used. However, one
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Figure 4.1: Example of a 2-layer Mie scattering model for unpolarised incidence.

must first define the corresponding refractive indices per layer (the remainder of
the parameters in the function follow that of Section 4.1), an incident laser power
(e.g. 2mW) inµW (i.e. 2000) and define the polarisation state (see Section 2.2.1).
As a result at the command prompt

>> m = [1.1 1.3]; Io = 2000;

>> polarisation = 0;

>> I = nlayerIntensity(x, m, Io, theta, polarisation);
>> logI = log(I);

where the last line has been added so as to emphasize the maxima/minima of the
calculated pattern when we need to get a plot. Finally, when we have ’real data’
then some noise level is expected, that is to say the signal to noise ratio measured at
log(I) will be assumed to be of some decibels (db). To perform this more realistic
depiction, we insert a noise level of 30db and type on the command prompt

>> noisyI = awgn(logI, 30, ’measured’);
>> plot(ang,logI, ang,noisyI)

This results in Figure 4.1 where all input parameters as discussed in this chapter
have been introduced and the solid line represents the expected Scattered Intensity
without noise.
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Figure 4.2: A 2-layer Mie scattering model for unpolarised incidence but with a
denser cell wall.

A second example can be seen in Figure 4.2. The parameters used are the same
apart from the fact that the outer layer is of a thicker (i.e. more dense) composition
and so the refractive index is expected to increase. For this example it has been
assumed thatm2 = 1.55. Note that increasing the outer refractive index resulted in
increasing the number of oscillations within the inner cell and as such the number
of oscillations that appear in Figure 4.2.

4.3 Calculation and Plots for Degree of Polarisation

Using the same values for the input parametersx , mand theta that resulted in
Figure 4.1, we can now produce a plot of the degree of polarisation and polarisa-
tion ratio. That is to say, typing

ratioP = DegreeOfPolarisation(x, m, theta);

one gets the resulting Figures 4.3 and 4.4 respectively. According to Figure 4.4
and the said in Section 2.3.1, one would now conclude that a two layer sphere of
external radius1.1µm and core radius1µm of corresponding relative refractive
indices of 1.3 and 1.1 respectively, the resulting scattering light will be partially
polarised perpendicular to the scattering plane for

θ ∈ {[0, 0.3) ∪ [0.56, 0.61) ∪ [1.36, 1.5) ∪ [1.9, 2) ∪ [2.08, 2.25) ∪ [2.88, 3.12)} .

In all other angular regions the scattered light is partially polarised perpendicular
to the scattering plane.
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Figure 4.3: The scattered intensity’s degree of polarisation for 2-layer Mie scatter-
ing model.

Figure 4.4: The scattered intensity’s polarisation ratio for 2-layer Mie scattering
model.
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