03 | 12 | 2024

1DPyHC: A simple code for 1D plasmonic crystals

A python code to calculate the optical properties of 1D Photonic Crystals by Giovanni Pellegrini.

  • Link (28 Oct 2015)

https://github.com/gevero/1DPyHC/raw/master/images/bragg.png

 

EMUstack is an open-source simulation package for calculating light propagation through multi-layered stacks of dispersive, lossy, nanostructured, optical media. It implements a generalised scattering matrix method, which extends the physical intuition of thin film optics to complex structures.

py_matrix: A t-matrix code for multilayer structures with arbitrary dielectric tensors

A python implementation of the transfer matrix method for multilayer structures with arbitrary dielectric tensors by Giovanni Pellegrini.

  • Link (28 Oct 2015)

https://github.com/gevero/py_matrix/raw/master/images/multilayer.png

 

S4 (or simply S4) stands for Stanford Stratified Structure Solver, a frequency domain code to solve the linear Maxwell’s equations in layered periodic structures. Internally, it uses Rigorous Coupled Wave Analysis (RCWA; also called the Fourier Modal Method (FMM)) and the S-matrix algorithm.

  • Link (21 Aug 2014)

PAME

PAME (Plasmonic Assay Modeling Environment) by Adam Hughes is a graphical Python application for simulating plasmonic biosensors, particularly fiberoptic biosensors with nanoparticles.

  • Link (9 Sep 2015)

 

FLAGE by Krzysztof Skorupski is a fast and accurate implementation of PC/CC aggregation (DLA) algorithms. 
It is written in Java and enables to create meshes of dipoles for DDA simulations.
The generated structures  can also be exported into
*.pov, *.geo and other common formats.

  • Link (11 Mar 2014)

https://scattering.eu/img/flage_1.png

 

NPL Simulations

This code by Giuseppe Toscano is an extension to the COMSOL 4.2a RF Module. It is based on the hydrodynamic model which incorporates nonlocal effects in the optical response of nanoplasmonic structures. The extension can only handle 2D structures.

  • Link (4 Aug 2015)

RawDog is a MATLAB program by Gergely Kajtar. It calculates diffraction efficiencies of lamellar gratings, photonic crystals (1D and 2D) based on based on the Rigorous Coupled Wave Analysis (RCWA).

  • Link (17 Feb 2014)

ddscat-inputgen

ddscat-inputgen by Justin E Moore generates roughened spheres and spheroids geometries via Monte Carlo for DDSCAT simulation. 

  • Link (30 Jul 2015)

 

e-DDA (electron-driven discrete-dipole approximation) for simulating electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) experiments.

Subcategories

scattport.org verwendet Cookies, um Ihnen den bestmöglichen Service zu gewährleisten. Wenn Sie auf der Seite weitersurfen, stimmen Sie der Cookie-Nutzung zu.
Weitere Informationen Einverstanden Ablehnen