21 | 10 | 2021

These Mathematica script files by Markus Selmke allow the extensive study of light-particle interaction phenomena enountered in coherent focused beam illumination of spherical (multilayered) scatterers, e.g. to compute the intensity collected by a detection microscope objective and recorded with a photo-diode, radiation pressures, the rel. photothermal signal, sopectra, Poynting vector flows and near fields among other things.

  • Link (23 Nov 2011)

 

 

LMie (Linearized Mie) by Greg McGarragh computes the scattering properties for polydisperse homogeneous spherical particles using Mie theory. What sets LMie apart from the many other Mie implementations available is that in addition to the typical scattering quantities LMie has the option to analytically generate derivatives of these quantities with respect to the input parameters.

A Python code for computing the scattering properties of single- and dual-layered spheres with an easy-to-use object oriented interface.

Based on code by C. Mätzler; ported and published with permission.

Requires NumPy and SciPy.

 

Winsph by Steve Turley  is a windows program for computing the near and far field intensities for acoustic scattering from spheres. The three cases of a hard sphere, soft sphere, and penetrable sphere are handled for homogenouis media.

  • Link (8 June 2012)

Fortran program bhfield by Honoh Suzuki to compute the nearfield inside and outside of a coated sphere.

H. Suzuki and I-Y. S. Lee: Calculation of the Mie Scattering Field inside and outside a Coated Spherical Particle, Int. J. Phys. Sci., 3, 38-41 (2008; Errata: Int. J. Phys. Sci. 4, 615, 2009).

H. Suzuki and I-Y. S. Lee: Mie Scattering Field inside and near a Coated Sphere: Computation and Biomedical Applications, J. Quant. Spectrosc. Radiat. Transfer, in press (2012).

 

 

The Metal Nanoparticle (MNP) simulator is a GUI written by Guido Goldoni in Matlab as part of the NANOLAB project (www.nanolab.unimore.it).

MNP allows to simulate the absorption, extinction and scattering spectra of metallic nanoparticles dispersed in a solution. The material and size of the nanoparticles can be changed, as well as the type of solution, to highlight the size dependence of the optical properties of nano-materials, and their possible use, e.g., as sensors.

The MNP GUI uses the Mie theory to simulate spherical nanoparticles. MNP also tries to simulate the color of the solution as perceived by the human eye using colorimetric methods. The perceived color depends on the spectrum of the light source, which can also be changed.

  • Link (25 May 2012)

Infinite Cylinder Optical (ICO) Tool Developed by Daniel Brandl allows the user to specify wavelength-dependent material refractive indexes for both the cylinder and surrounding medium, and to compute the optical scattering, absorption, and extinction as a function of wavelength or cylinder diameter.

  • Link (16 April 2012)

 

MatScat is a MATLAB package by Jan Schäfer which contains different solutions for the scattering of electromagnetic radiation by a sphere (Mie theory) or an infinite circular cylinder.

  • Link (27 Jul 2012)

Matlab solutions for plane wave scattered by a dielectric sphere and a multi-layer sphere by Guangran Kevin Zhu.

  • Link (4 April 2012)

Subcategories

scattport.org verwendet Cookies, um Ihnen den bestmöglichen Service zu gewährleisten. Wenn Sie auf der Seite weitersurfen, stimmen Sie der Cookie-Nutzung zu.
Weitere Informationen Einverstanden Ablehnen